Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of Th1-type immune responses requires the type I cytokine receptor TCCR

Abstract

On antigen challenge, T-helper cells differentiate into two functionally distinct subsets, Th1 and Th2, characterized by the different effector cytokines that they secrete1. Th1 cells produce interleukin (IL)-2, interferon-γ (IFN-γ) and lymphotoxin-β, which mediate pro-inflammatory functions critical for the development of cell-mediated immune responses, whereas Th2 cells secrete cytokines such as IL-4, IL-5 and IL-10 that enhance humoral immunity1,2. This process of T-helper cell differentiation is tightly regulated by cytokines. Here we report a new member of the type I cytokine receptor family, designated T-cell cytokine receptor (TCCR). When challenged in vivo with protein antigen, TCCR-deficient mice had impaired Th1 response as measured by IFN-γ production. TCCR-deficient mice also had increased susceptibility to infection with an intracellular pathogen, Listeria monocytogenes. In addition, levels of antigen-specific immunoglobulin-γ2a, which are dependent on Th1 cells, were markedly reduced in these mice. Our results demonstrate the existence of a new cytokine receptor involved in regulating the adaptive immune response and critical to the generation of a Th1 response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequence and tissue distribution of TCCR.
Figure 2: Targeting of the TCCR gene by homologous recombination.
Figure 3: Antigen-induced cytokine production and proliferation by lymph-node cells from TCCR-deficient mice.
Figure 4: Effect on IgG subclass concentrations and sensitivity to L. monocytogenes infection.
Figure 5: In vitro induction of T-helper cell differentiation and proliferation.

Similar content being viewed by others

References

  1. Mosmann, T. R. & Coffman, R. L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147 (1989).

    Article  CAS  Google Scholar 

  2. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138 –146 (1996).

    Article  CAS  Google Scholar 

  3. Constant, S. L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    Article  CAS  Google Scholar 

  4. Bazan, J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl Acad. Sci. USA 87, 6934– 6938 (1990).

    Article  ADS  CAS  Google Scholar 

  5. O'Garra, A. Cytokines induce the development of functionally heterogeneous T-helper cell subsets. Immunity 8, 275– 283 (1998).

    Article  CAS  Google Scholar 

  6. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Seder, R. A., Gazzinelli, R., Sher, A. & Paul, W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc. Natl Acad. Sci. USA 90, 10188–10192 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Le Gros, G. et al. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  Google Scholar 

  9. Swain, S. L. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol. Rev. 123, 115–144 (1991).

    Article  CAS  Google Scholar 

  10. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA 94, 10838–10843 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 ( 1996).

    Article  ADS  CAS  Google Scholar 

  14. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313– 319 (1996).

    Article  CAS  Google Scholar 

  15. Magram, J. et al. IL-12-deficient mice are defective in IFN- γ production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    Article  CAS  Google Scholar 

  16. Wu, C., Ferrante, J., Gately, M. K. & Magram, J. Characterization of IL-12 receptor β1 chain (IL-12Rβ1)-deficient mice: IL-12Rβ1 is an essential component of the functional mouse IL-12 receptor. J. Immunol. 159, 1658– 1665 (1997).

    CAS  PubMed  Google Scholar 

  17. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 ( 1996).

    Article  ADS  CAS  Google Scholar 

  18. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

  19. Snapper, C. M. & Paul, W. E. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575– 585 (1998).

    Article  CAS  Google Scholar 

  22. Takeda, K. et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–390 (1998).

    Article  CAS  Google Scholar 

  23. Heath, V. L. et al. Cutting edge: ectopic expression of the IL-12 receptor-β2 in developing and committed Th2 cells does not affect the production of IL-4 or induce the production of IFN-γ. J. Immunol. 164, 2861–2865. (2000).

    Article  CAS  Google Scholar 

  24. Nishikomori, R., Ehrhardt, R. O. & Strober, W. T-helper type 2 cell differentiation occurs in the presence of interleukin 12 receptor β2 chain expression and signaling. J. Exp. Med. 191, 847–858 (2000).

    Article  CAS  Google Scholar 

  25. Presky, D. H. et al. A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. Proc. Natl Acad. Sci. USA 93, 14002–14007 ( 1996).

    Article  ADS  CAS  Google Scholar 

  26. Dietrich, W. F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 ( 1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Genentech micro-injection lab, DNA sequencing lab and M. Vasser and the DNA synthesis lab for their support; J. Tepper, S. Fong, M. Aguet and R Schreiber for their advice on this project; and J. Ligos for help with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic J. de Sauvage.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Ghilardi, N., Wang, H. et al. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407, 916–920 (2000). https://doi.org/10.1038/35038103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing