Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-chondritic distribution of the highly siderophile elements in mantle sulphides

Abstract

The abundances of highly siderophile (iron-loving) elements (HSEs) in the Earth's mantle provide important constraints on models of the Earth's early evolution. It has long been assumed that the relative abundances of HSEs should reflect the composition of chondritic meteorites—which are thought to represent the primordial material from which the Earth was formed. But the non-chondritic abundance ratios recently found in several types of rock derived from the Earth's mantle1,2,3 have been difficult to reconcile with standard models of the Earth's accretion4,5,6,7,8,9, and have been interpreted as having arisen from the addition to the primitive mantle of either non-chondritic extraterrestrial material or differentiated material from the Earth's core. Here we report in situ laser-ablation analyses of sulphides in mantle-derived rocks which show that these sulphides do not have chondritic HSE patterns, but that different generations of sulphide within single samples show extreme variability in the relative abundances of HSEs. Sulphides enclosed in silicate phases have high osmium and iridium abundances but low Pd/Ir ratios, whereas pentlandite-dominated interstitial sulphides show low osmium and iridium abundances and high Pd/Ir ratios. We interpret the silicate-enclosed sulphides as the residues of melting processes and interstitial sulphides as the crystallization products of sulphide-bearing (metasomatic) fluids. We suggest that non-chondritic HSE patterns directly reflect processes occurring in the upper mantle—that is, melting and sulphide addition via metasomatism—and are not evidence for the addition of core material or of ‘exotic’ meteoritic components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk sulphide compositions plotted in the Fe–Ni–S–Cu system.
Figure 2: Primitive-mantle29-normalized HSE abundances of sulphide.

Similar content being viewed by others

References

  1. Snow, J. E. & Schmidt, G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle. Nature 391 , 166–169 (1998).

    Article  CAS  ADS  Google Scholar 

  2. Lorand, J. P., Gros, M. & Pattou, L. Fractionation of platinum-group elements in the upper mantle: a detailed study in Pyrenean orogenic peridotites. J. Petrol. 40, 951–987 ( 1999).

    Article  ADS  Google Scholar 

  3. Rehkämper, M. et al. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: Petrogenetic signature of melt percolation. Earth Planet. Sci. Lett. 172, 65–81 (1999).

    Article  ADS  Google Scholar 

  4. Borisov, A., Palme, H. & Spettel, B. Solubility of palladium in silicate melts: implications for core formation in the Earth. Geochim. Cosmochim. Acta 58, 705–716 (1994).

    Article  CAS  ADS  Google Scholar 

  5. Jagoutz, E. H. et al. The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar. Planet. Sci. Conf. X, 2031–2050 (1979).

    ADS  Google Scholar 

  6. Mitchell, R. H. & Keays, R. R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim. Cosmochim. Acta 45, 2425–2445 (1981).

    Article  CAS  ADS  Google Scholar 

  7. Morgan, J. W. Ultramafic xenoliths: clues to earth's late accretionary history. J. Geophys. Res. 91, 12375–12387 (1986).

    Article  ADS  Google Scholar 

  8. O'Neill, H. S. C. The origin and the early history of the Earth—A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991).

    Article  CAS  ADS  Google Scholar 

  9. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517– 520 (1996).

    Article  CAS  ADS  Google Scholar 

  10. Pattou, L., Lorand, J. P. & Gros, M. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature 379, 712– 715 (1996).

    Article  CAS  ADS  Google Scholar 

  11. Shirey, S. B. & Walker, R. J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth. Planet. Sci. 26, 423–500 ( 1998).

    Article  CAS  ADS  Google Scholar 

  12. Bulanova, G. P., Griffin, W. L., Ryan, C. G., Shestakova O. Ye. & Barnes, S. J. Trace element in sulfide inclusions from Yakutian diamonds. Contrib. Mineral. Petrol. 124 , 111–125 (1996).

    Article  CAS  ADS  Google Scholar 

  13. Guo, J., Griffin, W. L. & O'Reilly, S. Y. Geochemistry and origin of sulfide minerals, in mantle xenoliths: Qilin, southeastern China. J. Petrol. 40 , 1125–1149 (1999).

    Article  CAS  ADS  Google Scholar 

  14. Hart, S. R. & Ravizza, G. E. in Reading the Isotopic Code (eds Basu, A. & Hart, S. R.) 123–134 (American Geophysical Union, Washington DC, 1996).

    Google Scholar 

  15. Lorand, J. P. & Conquéré, F. Contribution a l’étude des sulfures dans les enclaves de lherzolites à spinelle des basaltes alcalins (Massif Central et Languedoc, France). Bull. Minéral. 106, 585–606 ( 1983).

    Article  CAS  Google Scholar 

  16. Dromgoole, E. L. & Pasteris, J. D. in Mantle Metasomatism and Alkaline Magmatism (eds Morris, E. & Pasteris, J. D.) 25–46 (Special Paper 215, Geological Society of America, Washington DC, 1987).

    Book  Google Scholar 

  17. Szabó, C. S. & Bodnar, R. J. Chemistry and origin of mantle sulfides in spinel peridotite xenoliths from alkaline basaltic lavas, Nograd-Gomor Volcanic Field, northern Hungary and southern Slovakia. Geochim. Cosmochim. Acta 59, 3917– 3927 (1995).

    Article  ADS  Google Scholar 

  18. Mackovicky, M., Mackovicky, E. & Rose-Hansen, J. in Metallogeny of Basic and Ultrabasic Rocks (eds Gallagher, M. J., Ixer, R. A., Neary, C. R. & Prichard, H. M.) 415 –425 (Inst. Min. Metl., London, 1986 ).

    Google Scholar 

  19. Lorand, J. P. Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle? Geochim. Cosmochim. Acta 54, 1487–1492 (1989).

    Article  ADS  Google Scholar 

  20. Ballhaus, C. & Ryan, C. G. Platinum-group elements in the Merensky Reef. 1. PGE in solid solution in base metal sulfides and the down-temperature equilibration history of Merensky ores. Contrib. Mineral. Petrol. 122, 241–251 ( 1995).

    Article  CAS  ADS  Google Scholar 

  21. Balhaus, C. & Sylvester, P. Noble metal enrichment processes in the Merensky Reef, Bushveld complex. J. Petrol. 41, 546–561 (1999).

    Google Scholar 

  22. Luguet, A. & Lorand, J. P. Minéralogie des sulfures de Fe-Ni-Cu dans les péridotites abyssales de la zone Mark (ride médio-Atlantique, 20-24°N). C.R. Acad. Sci. Paris 329, 637–644 (1999).

    Article  CAS  Google Scholar 

  23. Li, C., Barnes, S. J., Mackovicky, E., Rose-Hansen, J. & Mackovicky, M. Partitioning of nickel, copper, iridium, rhenium, platinum and palladium between monosulfide solution and sulphide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta 60, 1231–1238 (1996).

    Article  CAS  ADS  Google Scholar 

  24. Peach, C. L., Mathez, E. A., Keays, R. R. & Reeves, S. J. Experimentally-determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chem. Geol. 117, 361–377 (1994).

    Article  CAS  ADS  Google Scholar 

  25. Fleet, M. E., Crocket, J. H., Liu, M. & Stone, W. E. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide–PGE deposits. Lithos 47, 127– 142 (1999).

    Article  CAS  ADS  Google Scholar 

  26. Burton, K. W., Chiano, P., Birck, J.-L. & Allegre, C. J. Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth Planet. Sci. Lett. 172, 311– 322 (1999).

    Article  CAS  ADS  Google Scholar 

  27. Alard, O., Pearson, N. J., Griffin, W. L., Graham, S. & Jackson, S. E. in Beyond 2000, New Frontiers in Isotope Geoscience, Extended Abstract Volume 1– 5 (Lorne, Australia, 2000).

    Google Scholar 

  28. Kullerud, G., Yund, R. A. & Moh, G. H. Phase relation in the Cu-Fe-Ni, Cu-Ni-S and Fe-Ni-S systems. Econ. Geol. 4, 323– 343 (1969).

    Google Scholar 

  29. McDonough, W. F. & Sun, S. S. The chemical composition of the Earth. Chem. Geol. 120, 223– 253 (1995).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank F.R. (Joe) Boyd, S. Talnikova, Y. Barashkov and W.J. Powell for providing samples, and N.J. Pearson, C. Lawson and A. Sharma for assistance with the analytical facilities. We thank Y. Lahaye for comments on an earlier version of this Letter, and R. Carlson and M. Rehkämper for comments on the final version. This is a GEMOC National Key Centre publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Alard.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alard, O., Griffin, W., Lorand, J. et al. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407, 891–894 (2000). https://doi.org/10.1038/35038049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038049

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing