Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary

Abstract

The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period1. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time2,3. A temperature change across this boundary—from warm Eocene climates to cooler conditions in the Oligocene—has been suggested as a cause of this extinction event4, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths—ear stones—collected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies5,6. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4 °C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from isotopic analyses of microsampled otoliths.
Figure 2: Individual temperature records from microsampled congrid otoliths.
Figure 3: Eocene/Oligocene seasonal temperature change, as inferred from δ18O of otoliths.

Similar content being viewed by others

References

  1. Raup, D. M. & Sepkoski, J. J. Periodic extinction of families and genera. Science 231, 833– 836 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Dockery, D. T. Punctuated succession of Paleogene mollusks in the Northern Gulf Coastal Plain. Palaios 1, 582–589 (1986).

    Article  Google Scholar 

  3. Haasl, D. M. & Hansen, T. A. Timing of latest Eocene molluscan extinction patterns in Mississippi. Palaios 11, 487–494 (1996).

    Article  ADS  Google Scholar 

  4. Hansen, T. A. Extinction of Late Eocene to Oligocene molluscs: Relationship to shelf area, temperature changes, and impact events. Palaios 2, 69–75 (1987).

    Article  ADS  Google Scholar 

  5. Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353– 387 (1994).

    Article  ADS  Google Scholar 

  6. Oboh, F. E., Jaramillo, C. A. & Reeves-Morris, L. M. Late Eocene-Early Oligocene paleofloristic patterns in southern Mississippi and Alabama, US Gulf Coast. Rev. Palaeobot. Palynol. 91, 23–34 (1996).

    Article  Google Scholar 

  7. Palmer, K. V. W. & Brann, D. C. Catalogue of the Paleocene and Eocene mollusca of the southern and eastern United States: Part I. Pelecypoda, Amphineura, Pteropoda, Scaphopoda, and Cepholopoda. Bull. Am. Paleontol. 48, 1–443 (1965).

    Google Scholar 

  8. Palmer, K. V. W. & Brann, D. C. Catalogue of the Paleocene and Eocene mollusca of the southern and eastern United States: Part II. Gastropoda. Bull. Am. Paleontol. 48, 471–1027 (1966).

    Google Scholar 

  9. Dockery, D. T. Lower Oligocene Bivalvia of the Vicksburg Group. Mississippi Dept Natural Resour. Bur. Geol. Bull. 123, 1– 261 (1982).

    Google Scholar 

  10. MacNeil, F. S. & Dockery, D. T. Lower Oligocene Gastropoda, Scaphopoda, and Cephalopoda of the Vicksburg Group in Mississippi. Mississippi Dept Natural Resour. Bur. Geol. Bull. 124, 1–415 (1984).

    Google Scholar 

  11. Hansen, T. in Eocene-Oligocene Climatic and Biotic Evolution (eds Prothero, D. R. & Berggren, W. A.) 341–348 (Princeton Univ. Press, Princeton, New Jersey, 1992).

    Google Scholar 

  12. Frederiksen, N. O. Sporomorph biostratigraphy, floral changes, and paleoclimatology, Eocene and Earliest Oligocene of the Eastern Gulf Coast. US Geol. Surv. Prof. Pap. 1448, 1–68 ( 1988).

    Google Scholar 

  13. Seisser, W. G. Paleogene sea levels and climates: U.S.A. Eastern Gulf Coastal Plain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 261– 275 (1984).

    Article  Google Scholar 

  14. Kalish, J. M. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203 (1991).

    Article  ADS  Google Scholar 

  15. Kalish, J. M. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar. Biol. 110, 37–47 (1991).

    Article  Google Scholar 

  16. Iacumin, P., Bianucci, G. & Longinelli, A. Oxygen and carbon isotopic composition of fish otoliths. Mar. Biol. 113, 537–542 (1992).

    Article  Google Scholar 

  17. Patterson, W. P., Smith, G. R. & Lohmann, K. C. in Climate Change in Continental Isotopic Records (eds Swart, P., Lohmann, K. C., McKenzie, J. & Savin, S.) 191–202 (AGU Monograph 78, American Geophysical Union, Washington DC, 1993).

    Google Scholar 

  18. Valentine, J. W. Evolutionary Paleoecology of the Marine Biosphere (Prentice-Hall, Englewood Cliffs, New Jersey, 1973).

    Google Scholar 

  19. Vermeij, G. J. Biogeography and Adaptation (Harvard Univ. Press, Cambridge, Massachusetts, 1978).

    Google Scholar 

  20. Miller, K. G. in Eocene-Oligocene Climatic and Biotic Evolution (eds Prothero, D. R. & Berggren, W. A.) 160–177 (Princeton Univ. Press, Princeton, New Jersey, 1992).

    Google Scholar 

  21. Zachos, J. C., Breza, J. R. & Wise, S. W. Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569– 573 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Zachos, J. C., Lohmann, K. C., Walker, J. C. G. & Wise, S. W. Abrupt climate change and transient climates during the Paleogene: A marine perspective. J. Geol. 101, 191– 213 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Dettman, D. L. & Lohmann, K. C. in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 153–163 (AGU Monograph 78, American Geophysical Union, Washington DC, 1993).

    Google Scholar 

  25. NOAA/PMEL World Ocean Atlas [online] (cited Nov. 1999) <http://ferret.wrc.noaa.gov/fbin/climate_ server> (1994).

    Google Scholar 

  26. Weidman, C. R., Jones, G. A. & Lohmann, K. C. The long-lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the Northern Atlantic Ocean. J. Geophys. Res. 99, 18305–18314 (1994).

    Article  ADS  Google Scholar 

  27. Grossman, E. L. & Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59, 59–74 ( 1986).

    Article  CAS  Google Scholar 

  28. Berggren, W. A., Kent, D. V., Swisher, C. C. I. & Aubry, M.-P. A Revised Cenozoic Geochronology and Chronostratigraphy 129– 212 (Special Publication 54, SEPM, Tulsa, Oklahoma, 1995).

    Google Scholar 

  29. Baum, J. S., Baum, G. R., Thompson, P. R. & Humphrey, J. D. Stable isotopic evidence for relative and eustatic sea-level changes in Eocene to Oligocene carbonates, Baldwin County, Alabama. Geol. Soc. Am. Bull. 106, 824–839 ( 1994).

    Article  ADS  CAS  Google Scholar 

  30. Yancey, T. E. & Davidoff, A. J. Paleogene Sequence Stratigraphy of the Brazos River Section, Texas (Gulf Coast Association of Geological Societies, Austin, Texas, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank C. Wurster, L. Wingate and G. Hourigan for analysing samples and assisting with microsampling, and M. Suchter for assistance in microsampling, data entry and analysis; D. Nolf for providing additional Palaeogene otoliths from the Gulf Coast to augment our available samples; and T. Baumiller, B. Wilkinson, R. Buick and P. Wilf for comments on the manuscript. Ideas presented here benefited from discussion with participants of the GSA Penrose Conference on the Eocene/Oligocene boundary held in August 1999. This work was supported by the Michigan Society of Fellows and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Ivany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivany, L., Patterson, W. & Lohmann, K. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000). https://doi.org/10.1038/35038044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing