Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular emission from single-bubble sonoluminescence

Abstract

Ultrasound can drive a single gas bubble in water into violent oscillation; as the bubble is compressed periodically, extremely short flashes of light (about 100 ps) are generated with clock-like regularity1,2,3,4. This process, known as single-bubble sonoluminescence, gives rise to featureless continuum emission4,5 in water (from 200 to 800 nm, with increasing intensity into the ultraviolet). In contrast, the emission of light from clouds of cavitating bubbles at higher acoustic pressures (multi-bubble sonoluminescence1) is dominated by atomic and molecular excited-state emission6,7,8,9,10,11 at much lower temperatures6. These observations have spurred intense effort to uncover the origin of sonoluminescence and to generalize the conditions necessary for its creation. Here we report a series of polar aprotic liquids that generate very strong single-bubble sonoluminescence, during which emission from molecular excited states is observed. Previously, single-bubble sonoluminescence from liquids other than water has proved extremely elusive12,13. Our results give direct proof of the existence of chemical reactions and the formation of molecular excited states during single-bubble cavitation, and provide a spectroscopic link between single- and multi-bubble sonoluminescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radius versus time curves for single-bubble cavitation in methylformamide.
Figure 2: SBSL spectra of methylformamide at an acoustic pressure of 1.1 bar for both a stationary and a moving single bubble.
Figure 3: M-SBSL spectra of adiponitrile.
Figure 4: M-SBSL spectra of adiponitrile, formamide, water, methylformamide and dimethylsulphoxide (from the top to the bottom of the figure).

Similar content being viewed by others

References

  1. Suslick, K. S. & Crum, L. A. in Encyclopedia of Acoustics (ed. Crocker, M. J.) 271–282 (Wiley-Interscience, New York, 1997).

    Google Scholar 

  2. Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91, 3166– 3183 (1992).

    Article  ADS  Google Scholar 

  3. Gompf, B. et al. Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 1405 –1408 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Hiller, R. A., Putterman, S. J. & Weninger, K. R. Time-resolved spectra of sonoluminescence. Phys. Rev. Lett. 80, 1090–1093 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Hiller, R., Putterman, S. J. & Barber, B. P. Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69, 1182– 1184 (1992).

    Article  ADS  CAS  Google Scholar 

  6. McNamara, W. B. III, Didenko, Y. T. & Suslick, K. S. Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772–775 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Suslick, K. S. & Flint, E. B. Sonoluminescence from non-aqueous liquids. Nature 330, 553– 555 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Flint, E. B. & Suslick, K. S. Sonoluminescence from nonaqueous liquids: emission from small molecules. J. Am. Chem. Soc. 111, 6987–6992 (1989).

    Article  CAS  Google Scholar 

  9. Flint, E. B. & Suslick, K. S. Sonoluminescence from alkali metal salt solutions. J. Phys. Chem. 95, 1484–1488 (1991).

    Article  CAS  Google Scholar 

  10. Suslick, K. S., Flint, E. B., Grinstaff, M. W. & Kemper, K. Sonoluminescence from metal carbonyls. J. Phys. Chem. 97, 3098–3099 (1993).

    Article  CAS  Google Scholar 

  11. Didenko, Y. T. & Pugach, S. P. Spectra of water sonoluminescence. J. Phys. Chem. 98, 9742 –9749 (1994).

    Article  CAS  Google Scholar 

  12. Gaitan, D. F. et al. Spectra of single-bubble sonoluminescence in water and glycerine-water mixtures. Phys. Rev. E 54, 525– 528 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Weninger, K. et al. Sonoluminescence from single bubbles in nonaqueous liquids: new parameter space for sonochemistry. J. Phys. Chem. 99, 14195–14197 (1995).

    Article  CAS  Google Scholar 

  14. Moss, W. C., Clarke, D. B. & Young, D. A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276, 1398– 1401 (1997).

    Article  CAS  Google Scholar 

  15. Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Bernstein, L. S. & Zakin, M. R. Confined electron model for single-bubble sonoluminescence. J. Phys. Chem. 99, 14619–14627 (1995).

    Article  CAS  Google Scholar 

  17. Lohse, D. et al. Sonoluminescing air bubbles rectify argon. Phys. Rev. Lett. 78, 1359–1362 ( 1997).

    Article  ADS  CAS  Google Scholar 

  18. Lohse, D. & Hilgenfeldt, S. Inert gas accumulation in sonoluminescing bubbles. J. Chem. Phys. 107, 6986– 6997 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Weninger, K. R. et al. Sonoluminescence from an isolated bubble on a solid surface. Phys. Rev. E 56, 6745– 6749 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Matula, T. J. & Crum, L. A. Evidence for gas exchange in single-bubble sonoluminescence. Phys. Rev. Lett. 80, 865 –868 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Ketterling, J. A. & Apfel, R. E. Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Phys. Rev. Lett. 81, 4991– 4994 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Bernstein, L. S., Zakin, M. S., Flint, E. B. & Suslick, K. S. Cavitation thermometry using molecular and continuum sonoluminescence. J. Phys. Chem. 100, 6612–6619 (1996).

    Article  CAS  Google Scholar 

  23. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1993–1994).

    Google Scholar 

  24. Gaydon, A. G. The Spectroscopy of Flames 2nd edn (Chapman and Hall, London, 1974).

    Book  Google Scholar 

  25. Hertzberg, G. Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).

  26. Zel’dovich, Y. B. & Raizer, Yu. P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

    Google Scholar 

  27. Moran, M. J. & Sweider, D. Measurements of sonoluminescence temporal pulse shape. Phys. Rev. Lett. 80, 4987–4990 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. J. Matula for the loan of a calibrated needle hydrophone and many discussions, and S. Kulikov for assistance in constructing the imaging system. This work was supported by the US Defense Advanced Research Projects Agency and in part by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Suslick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didenko, Y., McNamara III, W. & Suslick, K. Molecular emission from single-bubble sonoluminescence. Nature 407, 877–879 (2000). https://doi.org/10.1038/35038020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing