Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vasoregulation by the β1 subunit of the calcium-activated potassium channel

Abstract

Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by local calcium release from the sarcoplasmic reticulum. These ‘calcium sparks’ activate calcium-dependent potassium (BK) channels comprised of α and β1 subunits. Here we show that targeted deletion of the gene for the β1 subunit leads to a decrease in the calcium sensitivity of BK channels, a reduction in functional coupling of calcium sparks to BK channel activation, and increases in arterial tone and blood pressure. The β1 subunit of the BK channel, by tuning the channel's calcium sensitivity, is a key molecular component in translating calcium signals to the central physiological function of vasoregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of β1 gene knockout mice.
Figure 2: Detection of lacZ gene expression from β1 gene-targeted mice.
Figure 3: Ca2+ and voltage dependence of BK channels in cerebral artery myocytes from control and β1-KO animals.
Figure 4: DHS-1 sensitivity and density of BK channels in cerebral arteries myocytes from control and β1-KO animals.
Figure 5: Decreased coupling of calcium sparks to BK channels in β1-KO myocytes.
Figure 6: β1-KO cerebral arteries are more constricted to pressure.
Figure 7: β1-KO mice show symptoms of hypertension.

Similar content being viewed by others

References

  1. Knot, H. J., Zimmermann, P. A. & Nelson, M. T. Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J. Physiol. (Lond.) 492, 419–430 (1996).

    Article  CAS  Google Scholar 

  2. Jaggar, J. H., Porter, V. A., Lederer, W. J. & Nelson, M. T. Calcium sparks in smooth muscle. Am. J. Physiol. Cell Physiol. 278, C235–C256 ( 2000).

    Article  CAS  Google Scholar 

  3. Galvez, A. et al. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem. 265, 11083–11090 (1990).

    CAS  PubMed  Google Scholar 

  4. Knot, H. J., Standen, N. B. & Nelson, M. T. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J. Physiol. (Lond.) 508 , 211–221 (1998).

    Article  CAS  Google Scholar 

  5. Brayden, J. E. & Nelson, M. T. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532–535 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Nelson, M. T. & Quayle, J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799–822 ( 1995).

    Article  CAS  Google Scholar 

  7. Sah, P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).

    Article  CAS  Google Scholar 

  8. Vergara, C., Latorre, R., Marrion, N. V. & Adelman, J. P. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8, 321–329 (1998).

    Article  CAS  Google Scholar 

  9. Kaczorowski, G. J., Knaus, H. G., Leonard, R. J., McManus, O. B. & Garcia, M. L. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28, 255–267 ( 1996).

    Article  CAS  Google Scholar 

  10. Latorre, R. in Molecular Workings of Large Conductance (Maxi) Ca2+-Activated K+ Channels 79–102 (Academic, San Diego, 1994).

    Google Scholar 

  11. Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y. & Aldrich, R. W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000).

    Article  CAS  Google Scholar 

  12. Behrens, R. et al. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett. 474, 99– 106 (2000).

    Article  CAS  Google Scholar 

  13. Knaus, H. G. et al. Primary sequence and immunological characterization of beta-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J. Biol. Chem. 269, 17274–17278 (1994).

    CAS  PubMed  Google Scholar 

  14. Meera, P., Wallner, M. & Toro, L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl Acad. Sci. USA 97, 5562–5567 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Wallner, M., Meera, P. & Toro, L. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc. Natl Acad. Sci. USA 96, 4137– 4142 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Xia, X. M., Ding, J. P. & Lingle, C. J. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J. Neurosci. 19, 5255–5264 (1999).

    Article  CAS  Google Scholar 

  17. Xia, X. M., Ding, J. P., Zeng, X. H., Duan, K. L. & Lingle, C. J. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J. Neurosci. 20, 4890–4903 (2000).

    Article  CAS  Google Scholar 

  18. Riazi, M. A. et al. Identification of a putative regulatory subunit of a calcium-activated potassium channel in the dup(3q) syndrome region and a related sequence on 22q11.2. Genomics 62, 90– 94 (1999).

    Article  CAS  Google Scholar 

  19. Weiger, T. M. et al. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20, 3563–3570 ( 2000).

    Article  CAS  Google Scholar 

  20. McManus, O. B. et al. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14, 645– 650 (1995).

    Article  CAS  Google Scholar 

  21. Knaus, H. G., Eberhart, A., Kaczorowski, G. J. & Garcia, M. L. Covalent attachment of charybdotoxin to the beta-subunit of the high conductance Ca2+-activated K+ channel. Identification of the site of incorporation and implications for channel topology. J. Biol. Chem. 269, 23336–23341 (1994).

    CAS  PubMed  Google Scholar 

  22. Dworetzky, S. I. et al. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J. Neurosci. 16, 4543–4550 (1996).

    Article  CAS  Google Scholar 

  23. Cox, D. H. & Aldrich, R. W. Regulation of the large conductance Ca+2-activated K+ channel by its β subunit. J. Gen. Physiol. 116, 411– 432 (2000).

    Article  CAS  Google Scholar 

  24. Meera, P., Wallner, M., Jiang, Z. & Toro, L. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (K V,Ca beta) of maxi K channels. FEBS Lett. 382 , 84–88 (1996).

    Article  CAS  Google Scholar 

  25. Tanaka, Y., Meera, P., Song, M., Knaus, H. G. & Toro, L. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J. Physiol. (Lond.) 502, 545– 557 (1997).

    Article  CAS  Google Scholar 

  26. Perez, G. J., Bonev, A. D., Patlak, J. B. & Nelson, M. T. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J. Gen. Physiol. 113, 229–238 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Jiang, Z., Wallner, M., Meera, P. & Toro, L. Human and rodent MaxiK channel beta-subunit genes: cloning and characterization. Genomics 55, 57–67 ( 1999).

    Article  CAS  Google Scholar 

  28. Poolos, N. P. & Johnston, D. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci. 19, 5205–5212 (1999).

    Article  CAS  Google Scholar 

  29. Bayliss, W. M. On the local reactions of the arterial wall to changes in internal pressure. J. Physiol. (Lond.) 28, 220– 231 (1902).

    Article  CAS  Google Scholar 

  30. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 ( 1995).

    Article  ADS  CAS  Google Scholar 

  31. Meininger, G. A. & Davis, M. J. Cellular mechanisms involved in the vascular myogenic response. Am. J. Physiol. 263, H647–659 (1992).

    CAS  PubMed  Google Scholar 

  32. Shesely, E. G. et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 93, 13176–13181 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Desai, K. H. et al. Cardiovascular indexes in the mouse at rest and with exercise: new tools to study models of cardiac disease. Am. J. Physiol. 272, H1053–1061 (1997).

    CAS  PubMed  Google Scholar 

  34. Wilson, P. W. From hypertension to heart failure: what have we learned? Clin. Cardio. 22 (suppl. 5), V1–10 (1999).

    Article  ADS  Google Scholar 

  35. McCobb, D. P. et al. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269, H767–777 (1995).

    CAS  PubMed  Google Scholar 

  36. Zhou, X. B., Schlossmann, J., Hofmann, F., Ruth, P. & Korth, M. Regulation of stably expressed and native BK channels from human myometrium by a cGMP- and cAMP-dependent protein kinase. Pflugers Arch. 436, 725– 734 (1998).

    Article  CAS  Google Scholar 

  37. Dong, H., Waldron, G. J., Cole, W. C. & Triggle, C. R. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Br. J. Pharmacol. 123, 821– 832 (1998).

    Article  CAS  Google Scholar 

  38. Khan, S. A., Higdon, N. R. & Meisheri, K. D. Coronary vasorelaxation by nitroglycerin: involvement of plasmalemmal calcium-activated K+ channels and intracellular Ca++ stores. J. Pharmacol. Exp. Ther. 284, 838–846 (1998).

    CAS  PubMed  Google Scholar 

  39. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 ( 1991).

    Article  CAS  Google Scholar 

  40. Joyner, A. L. in Gene Targeting: A Practical Approach Vol. xviii, 234 (IRL at Oxford Univ. Press, Oxford, New York, 1993 ).

    Google Scholar 

  41. Sambrook, J., Maniatis, T. & Fritsch, E. F. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ).

    Google Scholar 

  42. Hogan, B. in Manipulating the Mouse Embryo: A Laboratory Manual Vol. xvii, 497 (Cold Spring Harbor Laboratory Press, Plainview, New York, 1994).

    Google Scholar 

  43. Berkowitz, R. D. et al. CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J. Virol. 72, 10108–10117 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Knot, H. J. & Nelson, M. T. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. (Lond.) 508 , 199–209 (1998).

    Article  CAS  Google Scholar 

  45. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 ( 1995).

    Article  ADS  CAS  Google Scholar 

  46. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 ( 1988).

    Article  CAS  Google Scholar 

  47. Simpson, L. O. A mouse model of spontaneous renal hypertension. blood pressure, heart weight, kidney weight and proteinuria relationships in NZB × OUW F1 hybrid female mice. Pathology 12, 347– 357 (1980).

    Article  CAS  Google Scholar 

  48. Han, J. et al. Age-related changes in blood pressure in the senescence-accelerated mouse (SAM): aged SAMP1 mice manifest hypertensive vascular disease. Lab. Anim. Sci. 48, 256–263 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. K. Kobilka of Stanford University for advice; Y. Chen in the Stanford Transgenic Mouse facility for the blastocyst injections; G. Mawe for advice and assistance on isolated artery images; S. Brett Welsh for genotyping and technical assistance; D. Hill-Eubanks for comments on the manuscript and D. P. Regula for paraffin sections of hearts. DHS-1 was provided by Merck Research Laboratories. This work was supported by a grant from the Federation for Anesthesia Education and Research to A.J.P. and by grants from the National Institutes of Health (H.L.B.I. and D.D.K.), National Science Foundation, Totman Medical Trust for Cerebrovascular Research to M.T.N., and an American Heart Association Fellowship to G.P. R.W.A. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Aldrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, R., Peréz, G., Bonev, A. et al. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407, 870–876 (2000). https://doi.org/10.1038/35038011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing