Abstract
Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's ‘biological pump’, the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more efficient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194, 1121– 1132 (1976).
Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate (Reidel, Boston, 1984).
Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408–414 (1987).
Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
Webb, R. S., Lehman, S. J., Rind, D. H., Healy, R. J. & Sigman, D. M. Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385, 695–699 (1997).
Broecker, W. S. Glacial to interglacial changes in oceanchemistry. Progr. Oceanogr. 2, 151–197 ( 1982).
Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714 (1990).
Crowley, T. J. Ice-Age terrestrial carbon changes revisited. Glob. Biogeochem. Cycles 9, 377–389 ( 1995).
Shackleton, N. J. in The Fate of Fossil Fuel CO2 in the Oceans (eds Sundquist, E. T. & Broecker, W. S.) 401–427 (American Geophysical Union, Washington DC, 1977).
Curry, W. B., Duplessy, J. C., Labeyrie, L. D. & Shackleton, N. J. Changes in the distribution of δ13C of deep water TCO 2 between the last glaciation and the Holocene. Paleoceanography 3, 317–341 ( 1988).
Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 ( 1988).
Bird, M. I., Lloyd, J. & Farquhar, G. D. Terrestrial carbon storage at the LGM. Nature 371, 566 (1994).
Spero, H., Bijma, J., Lea, D. & Bemis, B. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497–500 ( 1997).
CLIMAP. The surface of the ice-age earth. Science 191, 1131– 1144 (1976).
Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263, 663–665 (1994).
Keir, R. S. On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–445 ( 1988).
Broecker, W. S. et al. How strong is the Harvardton-Bear constraint? Glob. Biogeochem. Cycles 13, 817–820 (1999).
Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 ( 1989).
Broecker, W. S. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1706 (1982).
Berger, W. H. Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis. Naturwissenschaften 69, 87–88 (1982).
Broecker, W. S. & Peng, T.-H. The role of CaCO 3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15– 29 (1987).
Milliman, J. D. Marine Carbonates (Springer, New York, 1974).
Edmond, J. M. et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth Planet. Sci. Lett. 46, 1–18 (1979).
Sayles, F. L. & Mangelsdorf, P. C. Jr . The equilibration of clay minerals with seawater: exchange reactions. Geochim. Cosmochim. Acta 41, 951–960 ( 1977).
Berger, W. H. Planktonic foraminifera: selective solution and the lysocline. Mar. Geol. 8, 111–138 ( 1970).
Archer, D. Modeling the calcite lysocline. J. Geophys. Res. 96 , 17037–17050 (1991).
Broecker, W. S. & Takahashi, T. The relationship between lysocline depth and in situ carbonate ion concentration. Deep-Sea Res. 25, 65–95 (1978).
Broecker, W. S. in The Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 239 –265 (Yale Univ. Press, New Haven, Connecticut, 1971).
Catubig, N. et al. Global deep-sea burial rate of calcium carbonate during the last glacial maximum. Paleoceanography 13, 298–310 (1998).
Archer, D. & Maier-Raimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 ( 1994).
Dymond, J. & Lyle, M. Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene. Limnol. Oceanogr. 30, 699–712 ( 1985).
Keir, R. S. Is there a component of Pleistocene CO2 change associated with carbonate dissolution cycles? Paleoceanography 10, 871–880 (1995).
Sigman, D. M., McCorkle, D. C. & Martin, W. R. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12, 409–427 (1998).
Emerson, S. & Bender, M. L. Carbon fluxes at the sediment-water interface of the deep sea: calcium carbonate preservation. J. Mar. Res. 39, 139–162 ( 1981).
Hales, B. & Emerson, S. Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq). Geochim. Cosmochim. Acta 61, 501–514 (1997).
Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, M. N.) Vol. 2, 26–77 (Interscience, New York, 1963 ).
McElroy, M. B. Marine biological controls on atmospheric CO2 and climate. Nature 302, 328–329 ( 1983).
Chisholm, S. W. & Morel, F. M. M. (eds) What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol. Oceanogr. 36(8) (special volume) 1507–1970 (1991).
Ruttenberg, K. C. Reassessment of the oceanic residence time of phosphorous. Chem. Geol. 107, 405–409 ( 1993).
Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13, 352–364 ( 1998).
Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755– 758 (1995).
Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).
Pride, C. et al. Nitrogen isotopic variations in the Gulf of California since the last deglaciation: Response to global climate change. Paleoceanography 14, 397–409 ( 1999).
Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
Broecker, W. S. & Peng, T. -H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).
Tyrrel, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538 (1997).
Haug, G. H. et al. Glacial/interglacial variations in productivity and nitrogen fixation in the Cariaco Basin during the last 550 ka. Paleoceanography 13, 427–432 ( 1998).
Pedersen, T. F. Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B. P.). Geology 11, 16–19 (1983).
Berger, W. H., Herguera, J. C., Lange, C. B. & Schneider, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Kaminski, M., Labeyrie, L. & Pederson, T. F.) 385–412 (Springer, New York, 1994).
Farrell, J. W., Pedersen, T. F., Calvert, S. E. & Nielsen, B. Glacial–interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377, 514– 517 (1995).
Sanyal, A., Hemming, N. G., Broecker, W. S. & Hanson, G. N. Changes in pH in the eastern equatorial Pacific across stage 5-6 boundary based on boron isotopes in foraminifera. Glob. Biogeochem. Cycles 11, 125–133 ( 1997).
Knox, F. & McElroy, M. Changes in atmospheric CO2 influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 ( 1984).
Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric p CO 2 . Nature 308, 621– 624 (1984).
Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984).
Broecker, W. S. & Peng, T.-H. The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Glob. Biogeochem. Cycles 3, 215–239 (1989).
Martin, J. H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).
Francois, R. F. et al. Water column stratification in the Southern Ocean contributed to the lowering of glacial atmospheric CO2. Nature 389, 929–935 (1997).
Mortlock, R. A. et al. Evidence for lower productivity in the Antarctic during the last glaciation. Nature 351, 220– 223 (1991).
Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675– 680 (1995).
Rosenthal, Y., Dahan, M. & Shemesh, A. Southern Ocean contributions to glacial-interglacial changes of atmospheric CO2: Evidence from carbon isotope records in diatoms. Paleoceanography 15, 65– 75 (2000).
Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D. & Deck, B. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248– 250 (1999).
Di Tullio, G. R. et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404, 595 –598 (2000).
Moore, J. K., Abbott, M. R., Richman, J. G. & Nelson, D. M. The Southern Ocean at the last glacial maximum: A strong sink for atmospheric carbon dioxide. Glob. Biogeochem. Cycles 14, 455–475 (2000).
Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J.-F. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 ( 1999).
Toggweiler, J. R. Variations in atmospheric CO2 driven by ventilation of the ocean's deepest water. Paleoceanography 14, 571– 588 (1999).
Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial/interglacial CO2 variations. Nature 404, 171–174 ( 2000).
Boyle, E. A. Cadmium: Chemical tracer of deepwater paleoceanography. Paleoceanography 3, 471–489 ( 1988).
Keigwin, L. D. & Boyle, E. A. Late quaternary paleochemistry of high-latitude surface waters. Paleogeogr. Palaeoclim. Paleoecol. 73, 85–106 ( 1989).
Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer Academic, Boston, 1988).
Elderfield, H. & Rickaby, R. E. M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405, 305–310 ( 2000).
Broecker, W. S. & Maier-Reimer, E. The influence of air and sea exchange on the carbon isotope distribution in the sea. Glob. Biogeochem. Cycles 6, 315–320 (1992)..
Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).
Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Fischer, G. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Glob. Biogeochem. Cycles 13, 1149– 1166 (1999).
McCorkle, D. C., Martin, P. A., Lea, D. W. & Klinkhammer, G. P. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: delta C-13, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java plateau. Paleoceanography 10, 699– 714 (1995).
Kohfeld, K. E., Fairbanks, R. G., Smith, S. L. & Walsh, I. D. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679–699 (1996).
De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).
Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 ( 1998).
Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774– 777 (1998).
Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmos. 104, 15895–15916 (1998).
Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last glacial maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12, 787–796 ( 1997).
Toggweiler, J. R., Carson, S. & Bjornsson, H. Response of the ACC and the Antarctic pycnocline to a meridional shift in the southern hemisphere westerlies. Eos 80, OS286 (1999).
Morley, J. J. & Hays, J. D. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett. 66, 63–72 (1983).
Sarmiento, J. L. & Orr, J. C. Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36, 1928–1950 (1991).
Herguera, J. C., Jansen, E. & Berger, W. H. Evidence for a bathyal front at 2000 m depth in the glacial Pacific, based on a depth transect on Ontong Java Plateau. Paleoceanography 7, 273– 288 (1992).
Behl, R. J. & Kennett, J. P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243–246 ( 1996).
Boyle, E. A. The role of vertical chemical fractionation in controlling late quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714 (1988).
Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I 42, 477–500 ( 1998).
Gnanadesikan, A. A simple predictive model for the structure of the oceanic pycnocline. Science 283, 2077–2079 ( 1999).
Boyle, E. A. & Keigwin, L. D. Deep circulation of the North Atlantic for the last 200,000 years: geochemical evidence. Science 218, 784–787 ( 1982).
Leuenberger, M., Siegenthaler, U. & Langway, C. C. Carbon isotope composition of atmospheric CO 2 during the last Ice Age from an Antarctic ice core. Nature 357, 488–490 ( 1992).
Marino, B. D. & McElroy, M. B. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349, 127–131 ( 1991).
Sowers, T. & Bender, M. Climate records covering the last deglaciation. Science 269, 210– 214 (1995).
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 ( 1998).
Bassinot, F. C. et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).
Holmen, K. in Global Biogeochemical Cycles (eds Butcher, S. S., Charlson, R. J., Orians, G. H. & Wolfe, G. V.) 239–262 (Academic, New York, 1992).
Honjo, S. in Particle Flux in the Ocean (eds Ittekkot, V., Schafer, P., Honjo, S. & Depetris, P. J.) (Wiley Interscience, Munich, 1996).
Oppo, D. W. & Lehman, S. J. Mid-depth circulation of the subpolar North Atlantic during the last glacial maximum. Science 259, 1148–1152 (1993).
Keigwin, L. D. Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323–339 ( 1998).
Acknowledgements
We thank R. F. Anderson, M. L. Bender, M. A. Brzezinski and J. R. Toggweiler for discussions. We are indebted to P. G. Falkowski, G.M. Henderson and C. Prentice for comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sigman, D., Boyle, E. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000). https://doi.org/10.1038/35038000
Issue Date:
DOI: https://doi.org/10.1038/35038000
This article is cited by
-
The southward migration of the Antarctic Circumpolar Current enhanced oceanic degassing of carbon dioxide during the last two deglaciations
Communications Earth & Environment (2024)
-
Oxygen isotope constraints on the ventilation of the modern and glacial Pacific
Climate Dynamics (2024)
-
Southern Ocean glacial conditions and their influence on deglacial events
Nature Reviews Earth & Environment (2023)
-
Spatiotemporal high-resolution mapping of biological production in the Southern Ocean
Communications Earth & Environment (2023)
-
Variable ventilation ages in the equatorial Indian Ocean thermocline during the LGM
Scientific Reports (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.