Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defying death after DNA damage

Abstract

DNA damage frequently triggers death by apoptosis. The irreversible decision to die can be facilitated or forestalled through integration of a wide variety of stimuli from within and around the cell. Here we address some fundamental questions that arise from this model. Why should DNA damage initiate apoptosis in the first place? In damaged cells, what are the alternatives to death and why should they be selected in some circumstances but not others? What signals register DNA damage and how do they impinge on the effector pathways of apoptosis? Is there a suborganellar apoptosome complex effecting the integration of death signals within the nucleus, just as there is in the cytoplasm? And what are the consequences of failure to initiate apoptosis in response to DNA damage?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM, checkpoints and the cell cycle.
Figure 2: Apoptotic and survival pathways.
Figure 3: Spectral karyotyping.

Similar content being viewed by others

References

  1. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 ( 1995).

    Article  ADS  CAS  Google Scholar 

  2. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death . Nature Med. 6, 513–519 (2000).

    Article  CAS  Google Scholar 

  3. Korsmeyer, S. J. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59, 1693–1700 (1999).

    Google Scholar 

  4. Friedberg, E., Walker, G. & Siede, W. DNA Repair and Mutagenesis 108– 133 (ASM Press, Washington DC, 1995).

    Google Scholar 

  5. MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575– 2587 (1996).

    CAS  PubMed  Google Scholar 

  6. Bach, S. P., Renehan, A. G. & Potten, C. S. Stem cells: the intestinal stem cell as a paradigm . Carcinogenesis 21, 469– 476 (2000).

    Article  CAS  Google Scholar 

  7. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849– 852 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Matsuyama, S., Nouraini, S. & Reed, J. C. Yeast as a tool for apoptosis research. Curr. Opin. Microbiol. 2, 618–623 (1999).

    Article  CAS  Google Scholar 

  10. Aravind, L., Dixit, V. M. & Koonin, E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47– 53 (1999).

    Article  CAS  Google Scholar 

  11. Oshima, H., Oshima, M., Kobayashi, M., Tsutsumi, M. & Taketo, M. M. Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res. 57, 1644–1649 ( 1997).

    CAS  PubMed  Google Scholar 

  12. Pieper, A. A., Verma, A., Zhang, J. & Snyder, S. H. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci. 20, 171–181 ( 1999).

    Article  CAS  Google Scholar 

  13. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 ( 1994).

    Article  ADS  CAS  Google Scholar 

  14. Toft, N. J. et al. Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. Proc. Natl Acad. Sci. USA 96, 3911–3915 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Griffiths, S. D. et al. Absence of p53 permits propagation of mutant cells following genotoxic damage. Oncogene 14, 523– 531 (1997).

    Article  CAS  Google Scholar 

  16. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Hanahan, D. & Weinberg, R. The hallmarks of cancer. Cell 100, 57–70 ( 2000).

    Article  CAS  Google Scholar 

  18. Van Sloun, P. P. et al. The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Res. 27, 3276–3282 (1999).

    Article  CAS  Google Scholar 

  19. Martin, S., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).

    Article  CAS  Google Scholar 

  20. Galy, V. et al. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108– 112 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Hsu, H. L., Gilley, D., Blackburn, E. H. & Chen, D. J. Ku is associated with the telomere in mammals. Proc. Natl Acad. Sci. USA 96, 12454–1248 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Gasser, S. A sense of the end. Science 288, 1377– 1379 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Lieber, M. Pathological and physiological double-strand breaks. Roles in cancer, aging and the immune system. Am. J. Pathol. 153, 1323–1332 (1998).

    Article  CAS  Google Scholar 

  24. Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

    Article  CAS  Google Scholar 

  25. Rotman, G. & Shiloh, Y. ATM: from gene to function. Hum. Mol. Genet. 7, 1555–1563 (1998).

    Article  CAS  Google Scholar 

  26. Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916– 934 (1999).

    Article  CAS  Google Scholar 

  27. Hoekstra, M. F. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev. 7, 170–175 (1997).

    Article  CAS  Google Scholar 

  28. Smith, G. C. et al. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc. Natl Acad. Sci. USA 96, 11134–11139 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Goldbeter, A. & Koshland, D. E. Jr An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840– 6844 (1981).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Aguda, B. Instabilities in phosphorylation–dephosphorylation cascades and cell cycle checkpoints. Oncogene 18, 2846– 2851 (1998).

    Article  Google Scholar 

  31. Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA 93, 4827–4832 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Dasika, G. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18 , 7883–7899 (1999).

    Article  CAS  Google Scholar 

  33. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage . Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  34. Pandita, T. K. et al. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 19, 1386– 1391 (2000).

    Article  CAS  Google Scholar 

  35. Lohrum, M. & Vousden, K. Regulation and function of the p53-related proteins: same family, different rules. Trends Cell Biol. 10, 197–202 (2000).

    Article  CAS  Google Scholar 

  36. Chan, T., Hermeking, H., Lengauer, C., Kinzler, K. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway . Nature 404, 613–617 (2000).

    Article  ADS  CAS  Google Scholar 

  38. Sionov, R. V. & Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145–6157 (1999).

    Article  CAS  Google Scholar 

  39. Meek, D. Mechanisms of switching on p53: a role for covalent modification? Oncogene 18, 7666–7675 ( 1999).

    Article  CAS  Google Scholar 

  40. Clarke, A. R., Gledhill, S., Hooper, M. L., Bird, C. C. & Wyllie, A. H. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 9, 1767– 1773 (1994).

    CAS  PubMed  Google Scholar 

  41. Merritt, A. J. et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54, 614–617 (1994).

    CAS  PubMed  Google Scholar 

  42. Wu, G. S. et al. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 18, 6411 –6418 (1999).

    Article  CAS  Google Scholar 

  43. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103– 113 (2000).

    Article  CAS  Google Scholar 

  44. O'Connor, L., Harris, A. W. & Strasser, A. CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Res. 60, 1217 –1220 (2000).

    CAS  PubMed  Google Scholar 

  45. Munsch, D. et al. Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. J. Biol. Chem. 275, 3867 –3872 (2000).

    Article  CAS  Google Scholar 

  46. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981– 993 (2000).

    Article  CAS  Google Scholar 

  47. Attardi, L. D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kannan, K., Amariglio, N., Rechavi, G. & Givol, D. Profile of gene expression regulated by induced p53: connection to the TGF-β family. FEBS Lett. 470, 77– 82 (2000).

    Article  CAS  Google Scholar 

  49. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  Google Scholar 

  50. Morris, V. B., Brammall, J., Noble, J. & Reddel, R. p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: an immunofluorescence study . Exp. Cell Res. 256, 122– 130 (2000).

    Article  CAS  Google Scholar 

  51. Loughran, O. & La Thangue, N. B. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol. 20, 2186–2197 (2000).

    Article  CAS  Google Scholar 

  52. Blattner, C., Sparks, A. & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19, 3704–3713 ( 1999).

    Article  CAS  Google Scholar 

  53. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642 –645 (2000).

    Article  ADS  CAS  Google Scholar 

  54. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 ( 2000).

    Article  ADS  CAS  Google Scholar 

  55. Wu, X. & Levine, A. J. p53 and E2f-1 co-operate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  ADS  CAS  Google Scholar 

  56. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 ( 1992).

    Article  CAS  Google Scholar 

  57. Lowe, S. W., Jacks, T., Housman, D. E. & Ruley, H. E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl Acad. Sci. USA 91, 2026 –2030 (1994).

    Article  ADS  CAS  Google Scholar 

  58. Van Etten, R. A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 9, 179–186 (1999).

    Article  CAS  Google Scholar 

  59. Kharbanda, S., Yuan, Z. M., Weichselbaum, R. & Kufe, D. Determination of cell fate by c-Abl activation in the response to DNA damage . Oncogene 17, 3309–3318 (1998).

    Article  Google Scholar 

  60. Shaul, Y. c-Abl: activation and nuclear targets. Cell Death Differ. 7, 10–16 (2000).

    Article  CAS  Google Scholar 

  61. Nickerson, J. Nuclear dreams: the malignant alteration of nuclear architecture. J. Cell. Biochem. 70, 172–180 (1998).

    Article  CAS  Google Scholar 

  62. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Z. G. et al. PML is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).

    Article  CAS  Google Scholar 

  64. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 18, 7941–7947 ( 1999).

    Article  CAS  Google Scholar 

  65. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).

    Article  CAS  Google Scholar 

  66. Maul, G. G., Negorev, D., Bell, P. & Ishov, A. M. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J. Struct. Biol. 129, 278–287 ( 2000).

    Article  CAS  Google Scholar 

  67. Lombard, D. B. & Guarente, L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres . Cancer Res. 60, 2331– 2334 (2000).

    CAS  PubMed  Google Scholar 

  68. Zhong, S. et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J. Exp. Med. 191, 631–640 (2000).

    Article  CAS  Google Scholar 

  69. Bochar, D. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000).

    Article  CAS  Google Scholar 

  70. Linares-Cruz, G. et al. p21WAF-1 reorganizes the nucleus in tumor suppression. Proc. Natl Acad. Sci. USA 95, 1131– 1135 (1998).

    Article  ADS  CAS  Google Scholar 

  71. Gray, J. & Collins, C. Genome changes and gene expression in human solid tumors. Carcinogenesis 21, 443–452 (2000).

    Article  CAS  Google Scholar 

  72. Schrock, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 ( 1996).

    Article  ADS  CAS  Google Scholar 

  73. Anderson, W. Gene therapy scores against cancer. Nature Med. 6, 862–863 (2000).

    Article  CAS  Google Scholar 

  74. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207– 210 (2000).

    Article  ADS  CAS  Google Scholar 

  75. Karran, P. DNA double strand breaks in mammalian cells. Curr. Opin. Geneti. Dev. 10, 144–150 ( 2000).

    Article  CAS  Google Scholar 

  76. Liang, F., Han, M., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95, 5172–5177 (1998).

    Article  ADS  CAS  Google Scholar 

  77. Kolodner, R. & Marsischky, G. Eukaryotic DNA mismatch repair . Curr. Opin. Genet. Dev. 9, 89– 96 (1999).

    Article  CAS  Google Scholar 

  78. Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M. & Slupphaug, G. Base excision repair of DNA in mammalian cells. FEBS Lett. 476, 73–77 ( 2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Wyllie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, T., Allen, R. & Wyllie, A. Defying death after DNA damage. Nature 407, 777–783 (2000). https://doi.org/10.1038/35037717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037717

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing