Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The possible subduction of continental material to depths greater than 200 km


Determining the depth to which continental lithosphere can be subducted into the mantle at convergent plate boundaries is of importance for understanding the long-term growth of supercontinents as well as the dynamic processes that shape such margins. Recent discoveries of coesite and diamond in regional ultrahigh-pressure (UHP) metamorphic rocks has demonstrated that continental material can be subducted to depths of at least 120 km (ref. 1), and subduction to depths of 150–300 km has been inferred from garnet peridotites in orogenic UHP belts based on several indirect observations2,3,4,5. But continental subduction to such depths is difficult to trace directly in natural UHP metamorphic crustal rocks by conventional mineralogical and petrological methods because of extensive late-stage recrystallization and the lack of a suitable pressure indicator. It has been predicted from experimental work, however, that solid-state dissolution of pyroxene should occur in garnet at depths greater than 150 km (refs 6,7,8). Here we report the observation of high concentrations of clinopyroxene, rutile and apatite exsolutions in garnet within eclogites from Yangkou in the Sulu UHP metamorphic belt, China. We interpret these data as resulting from the high-pressure formation of pyroxene solid solutions in subducted continental material. Appropriate conditions for the Na2O concentrations and octahedral silicon observed in these samples are met at depths greater than 200 km.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transmitted light photomicrographs of garnet (grt) with exsolution rods of clinopyroxene (cpx), rutile (rut) and apatite (ap) along crystallographically controlled planes.


  1. 1

    Chopin, C. & Sobolev, N. V. in Ultrahigh Pressure Metamorphism (eds Coleman, R. G. & Wang, X.) 96–131 (Cambridge Univ. Press, New York, 1995).

    Book  Google Scholar 

  2. 2

    Dobrzhinetskaya, L., Green, H. W. & Wang, S. Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271, 1841– 1845 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bozhilov, K. N., Green, H. W. & Dobrzhinetskaya, L. Clinoenstatite in Alpe Arami peridotite: additional evidence of very high pressure. Science 284, 128–132 (1999).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Van Roermund, H. L. M. & Drury, M. R. An ultra-deep (>200 km) orogenic peridotite body in Western Norway. Eos 79, F971 (1998).

    Google Scholar 

  5. 5

    Yang, J. J., Godard, G., Kienast, J. R., Lu, Y. & Sun, J. Ultrahigh-pressure (60 kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J. Geol. 101, 541–554 (1993).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ringwood, A. E. & Major, A. Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet. Sci. Lett. 12, 411–418 ( 1971).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Irifune, T., Sekine, T., Ringwood, A. E. & Hibberson, W. O. The eclogite-garnet transformation at high pressure and some geographical implications. Earth Planet. Sci. Lett. 77, 245–256 (1986).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Irifune, T., Ringwood, A. E. & Hibberson, W. O. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet. Sci. Lett. 126, 351–386 ( 1994).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ames, L., Tilton, G. R. & Zhou, G. Z. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology 21, 339–342 ( 1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cong, B. L. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China (Science Press/Kluwer Academic, Beijing, 1996).

    Google Scholar 

  11. 11

    Wallis, S. R. et al. Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China. J. Geol. Soc. Lond. 154, 45–54 ( 1997).

    CAS  Article  Google Scholar 

  12. 12

    Zhang, R. Y. & Liou, J. G. Partial transformation of gabbro to coesite-bearing eclogites from Yangkou, the Sulu terrane, eastern China. J. Metamorph. Geol. 15, 183– 202 (1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Anderson, S. & O'Keeffe, M. Body-centered cubic cylinder packing and the garnet structure. Nature 267, 605 –606 (1977).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Sobolev, N. V., Lavrent’ev, G. & Yu, G. Isomorphic sodium admixture in garnets formed at high pressure. Contrib. Mineral. Petrol. 31, 1–12 (1971).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Moore, R. O. & Gurney, J. J. Pyroxene solid solution in garnets included in diamond. Nature 318, 553– 555 (1985).

    ADS  Article  Google Scholar 

  16. 16

    Haggerty, S. E. & Sautter, V. Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248, 993–996 ( 1990).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Ringwood, A. E. & Lovering, J. F. Significance of pyroxene-ilmenite intergrowths among kimberlite xenoliths. Earth Planet. Sci. Lett. 7, 371–375 (1970).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Tompsom, R. N. Is upper-mantle phosphorus contained in sodic garnet? Earth Planet. Sci. Lett. 26, 417–424 ( 1975).

    ADS  Article  Google Scholar 

  19. 19

    Schertl, H. P., Schreyer, W. & Chopin, C. The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps: detailed petrography, mineral chemistry and P-T path. Contrib. Mineral. Petrol. 108, 1–21 (1991).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ono, S. & Yasuda, A. Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 oC. Physics Earth Planet. Inter. 96, 171– 179 (1996).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Okamoto, K. & Maruyama, S. Multi-anvil re-equilibration experiments of a Dabie Shan ultrahigh-pressure eclogite within the diamond-stability fields. Island Arc 7, 52–69 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, R. Y., Liu, J. G. & Cong, B. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. J. Metamorph. Geol. 12, 169–186 (1995).

    ADS  Article  Google Scholar 

  23. 23

    Widiyantoro, S. & Hist, R. Structure and evolution of lithospheric slab beneath the Sunda Arc, Indonesia. Science 271, 1566–1570 ( 1996).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Amstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady state no-continental growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).

    ADS  Article  Google Scholar 

  25. 25

    Dupre, B. & Allegre, C. Pb-Sr isotopic variations in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Loubet, M., Sassi, R. & Di Donato, G. Mantle heterogeneities: a combined isotope and trace element approach and evidence for recycled continental crust materials in some OIB sources. Earth Planet. Sci. Lett. 89, 299–315 (1988).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Ye, K. et al. Large areal extent of ultrahigh-pressure (UHP) metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 52, 157–164 (2000).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Green, H. W., Dobrzhinetskaya, L. & Bozhilov, K. N. Response to “Determining the origin of ultrahigh-pressure lherzolites. By Hacker, B. R., Sharp, T., Zhang, R. Y., Liou, J. G. & Hervig, R. L.” Science 278, 704– 707 (1997).

    CAS  Google Scholar 

Download references


We thank P. Xu for programming microprobe analyses, and H. W. Green for comments that significantly improved this Letter. This work was supported by the National Natural Science Foundation of China

Author information



Corresponding author

Correspondence to Kai Ye.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, K., Cong, B. & Ye, D. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–736 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing