Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcranial magnetic stimulation and cognitive neuroscience

Abstract

Transcranial magnetic stimulation has been used to investigate almost all areas of cognitive neuroscience. This article discusses the most important (and least understood) considerations regarding the use of transcranial magnetic stimulation for cognitive neuroscience and outlines advances in the use of this technique for the replication and extension of findings from neuropsychology. We also take a more speculative look forward to the emerging development of strategies for combining transcranial magnetic stimulation with other brain imaging technologies and methods in the cognitive neurosciences.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Defining the problem space of TMS.
Figure 2: TMS and the brain.
Figure 3: Subtractive lesion analysis applied to TMS.
Figure 4: Spatial and functional specificity of TMS.
Figure 5: Temporal relationship between transcranial magnetic stimulation and behaviour.

References

  1. 1

    Walsh, V. & Cowey, A. Magnetic stimulation studies of visual cognition. Trends Cogn. Sci. 2, 103–110 (1998).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Walsh, V. & Rushworth, M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37, 125–135 (1999).

    CAS  PubMed  Google Scholar 

  3. 3

    Pascual-Leone, A., Bartres-Faz, D. & Keenan, J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Phil. Trans. R. Soc. 354, 1229–1238 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Pascual–Leone, A., Walsh, V. & Rothwell, J. C. Transcranial Magnetic Stimulation: virtual lesion and chronometry. Curr. Opin. Neurobiol. (in the press).

  5. 5

    Grafman, J. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 115–140 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  6. 6

    Amassian, V. E. et al. Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation. Brain Res. 605, 317–321 (1993).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Meyer, B.-U., Papke, K. & Oberwittler, C. Suppression of visual perception by transcranial magnetic stimulation — experimental findings in healthy subjects and patients with optic neuritis. Electroencephalogr. Clin. Neurophysiol. 86, 259–267 (1993).

    Article  Google Scholar 

  8. 8

    Corthout, E., Uttl, B., Walsh, V., Hallett, M. & Cowey, A. Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. Neuroreport 10, 1–4 (1999).

    Article  Google Scholar 

  9. 9

    Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Stewart, L. M., Battelli, L., Walsh, V. & Cowey, A. Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 51, 334–350 (1999).

    CAS  Google Scholar 

  11. 11

    Epstein, C. & Zangaladze, A. Magnetic coil suppression of extrafoveal visual perception using disappearance targets. J. Clin. Neurophysiol. 13, 242–246 (1996).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Epstein, C., Verson, R. & Zangaladze, A. Magnetic coil suppression of visual perception at an extracalcarine site. J. Clin. Neurophysiol. 13, 247–252 (1996).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Zangaladze, A., Epstein, C. M., Grafton, S. T. & Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 (1999).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Hotson, J. R. & Anand, S. The selectivity and timing of motion processing in human temporo-parieto–occipital cortex: A transcranial magnetic stimulation study. Neuropsychologia 37, 169–179 (1999).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Masur, H., Papke, K. & Oberwittler, C. Suppression of visual perception by transcranial magnetic stimulation — experimental findings in healthy subjects and patients with optic neuritis. Electroencephalogr. Clin. Neurophysiol. 86, 259–267 (1993).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Walsh, V., Ellison, A., Battelli, L. & Cowey, A. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc. R. Soc. Lond. B 265, 537–543 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Ashbridge, E., Walsh, V. & Cowey, A. Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia 35, 1121–1131 (1997).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Pascual-Leone, A., Grafman, J. & Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Pascual-Leone, A. in Recent Advances in Clinical Neurophysiology (eds Kinura, J. & Shibasaki, H.) 304–308 (Elsevier Science, Amsterdam, 1996).

    Google Scholar 

  20. 20

    Walsh, V., Ashbridge, E. & Cowey, A. Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36, 45–49 (1998).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Pascual-Leone, A. et al. Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport 7, 2068–2070 (1996).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Kew, J. J. M. et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J. Neurophysiol. 72, 2517–2524 (1994).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Corthout, E., Uttl, B., Walsh, V., Hallet, M. & Cowey, A. Plasticity revealed by transcranial magnetic stimulation of early visual cortex. Neuroreport 11, 1565–1569 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. & Classen, J. Induction of plasticity in the human moor cortex by paired pulse stimulation. Brain 123, 572–584 (2000).

    PubMed  Article  Google Scholar 

  25. 25

    Pascual-Leone, A., Gates, J. R. & Dhuna, A. Induction of speech arrest and counting errors with rapid rate transcranial magnetic stimulation. Neurology 41, 697–702 (1991).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Epstein, C. M. Transcranial Magnetic Stimulation: Language function. J. Clin. Neurophysiol. 15, 325–332 (1998).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Grafman, J. et al. Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5, 1157–1160 (1994).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Cowey, A. & Walsh, V. Magnetically induced phosphenes in sighted, blind and blindsighted subjects. Neuroreport (in the press).

  29. 29

    Cowey, A. & Walsh, V. Tickling the brain. Prog. Brain Res. (in the press).

  30. 30

    Sommer, M., Tergau, F. & Paulus, W. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 163–172 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  31. 31

    Cunnington, R., Iansek, R. & Thickbroom, G. W. Effects of transcranial magnetic stimulation over supplementary motor area on movement in Parkinson's disease. Brain 119, 815–822 (1996).

    PubMed  Article  Google Scholar 

  32. 32

    Siebner, H. R. et al. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport 10, 589–594 (1999).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Epstein, C. M. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 173–184 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  34. 34

    Caramia, M. D. et al. Distinguishing forms of generalized epilepsy using magnetic brain stimulation. Electroencephalogr. Clin. Neurophysiol. 98, 14–19 (1996).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Lisanby, S. H., & Sackheim, H. A. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 185–200 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  36. 36

    George, M. S. et al. Daily repetitive transcranial magnetic stimulation improves mood in depression. Neuroreport 6, 1853–1856 (1996).

    Article  Google Scholar 

  37. 37

    Bellmaker, R. H., Einat, H., Levkovitz, Y., Segal, M. & Grisaru, N. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 163–172 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  38. 38

    George, M. S. et al. Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation of the prefrontal cortex. J. Neuropsychiat. Clin. Neurosci. 8, 172–180 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Greenberg, B. D., & Rausch, S. L. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 209–222 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  40. 40

    Greenberg, B. D. et al. Effects of prefrontal repetitive transcranial magnetic stimulation in obsessive compulsive disorders: a preliminary study. Am. J. Psychiatry 154, 867–869 (1997).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    McCann, U. D. et al. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder. Arch. Gen. Psychiatry 55, 276–279 (1998).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Ingham, R. J., Fox, P. T., Ingham, J. C., Collins, J. & Pridgen, S. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 223–236 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  43. 43

    Ziemann, U., Paulus, W. & Rothenberger, A. Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. Am. J. Psychiatry 154, 1277–1284 (1997).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Nahas, Z., Molloy, M., Risch, S. C., & George, M. S. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 237–251 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  45. 45

    Puri, B. K. et al. An investigation of motor function in schizophrenia using transcranial magnetic stimulation. Br. J. Psychiatry 169, 690–695 (1996).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Davey, N. & Puri, B. K. On electromyographic responses to transcranial magnetic stimulation of the motor cortex in schizophrenia. J. Neurol. Neurosurg. Psychiatry 63, 468–473 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Geller, V., Grisaru, N. & Abarbanel, J. M. Slow magnetic stimulation of the prefrontal cortex in depression and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 105–110 (1997).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Mills, K. Magnetic stimulation of the human nervous system (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  49. 49

    Pascual-Leone, A. et al. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol. 89, 120–130 (1993).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Wassermann, E. M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencephalogr. Clin. Neurophysiol. 108, 1–16 (1998).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Lorberbaum, J. P. & Wasserman, E. M. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 141–162 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  52. 52

    Barker, A. T. An introduction to the basic principles of magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 51, 1–21 (1999).

    Google Scholar 

  53. 53

    Jalinous, R. Technical and practical aspects of magnetic nerve stimulation. J. Clin. Neurophysiol. 8, 10–25 (1991).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Bohning, D. E. in Transcranial Magnetic Stimulation in Neuropsychiatry (eds George, M. S. & Bellmaker, R. H.) 13–44 (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

  55. 55

    Gamba, H. R., & Delpy, D. T. Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging. Med. Biol. Computing 36, 165–170 (1998).

    CAS  Article  Google Scholar 

  56. 56

    Joy, M., Scott, G. & Henkelman, M. In vivo detection of applied electric currents by magnetic resonance imaging. Magn. Reson. Imaging 7, 89–94 (1989).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Tofts, P. S. The distribution of induced currents in magnetic stimulation of the nervous system. Phys. Med. Biol. 35, 1119–1128 (1990).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Watson J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Owen, A. M., Milner, B., Petrides, M. & Evans, A. C. Memory for object features versus object location; A positron emission tomography study of encoding and retrieval processes. Proc. Natl Acad. Sci. USA 93, 9212–9217 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the cortical processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Ueno, S., Tashiro, T. & Harada, K. Localised stimulation of neural tissue in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys. 64, 5862–5864 (1988).

    Article  Google Scholar 

  62. 62

    Ren, C., Tarjan, P. P. & Popovic, D. B. A novel electric design for electromagnetic stimulation – the slinky coil. IEEE Trans. Biomed. Eng. 42, 918–925 (1995).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Zimmerman, K. P. & Simpson, R. K. ‘Slinky’ coils for neuromagnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 101, 145–152 (1996).

    Article  Google Scholar 

  64. 64

    Paus, T. et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the cerebral cortex. J. Neurosci. 179, 3178–3184 (1997).

    Article  Google Scholar 

  65. 65

    Fox, P. et al. Imaging human intra cerebral connectivity by PET during TMS. Neuroreport 8, 2787–2791 (1997).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Siebner, H. R. et al. Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9, 943–948 (1998).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Bohning, D. E. et al. Mapping transcranial magnetic stimulation (TMS) fields with MRI. Neuroreport 8, 2535–2538 (1997).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Bohning, D. E. et al. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation (TMS). Invest. Radiol. 33, 336–340 (1998).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    George, M. S. et al. A pilot study using perfusion SPECT to image regional brain activity during prefrontal repetitive transcranial magnetic stimulation (rTMS). Hum. Psychopharmacol. 14, 161–170 (1999).

    Article  Google Scholar 

  70. 70

    Posner, M. I. Chronometric Explorations of Mind (Lawrence Erlbaum Asociates, Hillsdale, NJ, 1978).

    Google Scholar 

  71. 71

    Donders, F. C. in Attention and Performance II (ed. Koster, W. G.) 412–431 (North Holland Pub. Co., Amsterdam, 1969).

    Google Scholar 

  72. 72

    Miller, J. O. Discrete and continuous models of human information processing: theoretical distinctions and empirical results. Acta Psychologia. 67, 191–257 (1988).

    CAS  Article  Google Scholar 

  73. 73

    Coles, M. G. H., Smid, H. G., Scheffers, M. K. & Otten, L. J. in Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (eds Rugg, M. D. & Coles, M. G. H.) 86–131 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  74. 74

    Meyer, D. E., Osman, A. M., Irwin, D. E. & Yantis, S. Modern mental chronometry. Biol. Psychol. 26, 3–67 (1988).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Critchley, M. The Parietal Lobes (Hafner, New York, 1953).

    Google Scholar 

  77. 77

    Gazzaniga, M., Bogen, J. E. & Sperry, R. E. Some functional effects of sectioning the cerebral commisures. Proc. Natl Acad. Sci. USA 245, 947–952 (1962).

    Google Scholar 

  78. 78

    Riddoch, G. Dissociation of visual perceptions due to occipital injuries, wth especial reference to appreciation of movement. Brain 40, 15–57 (1917).

    Article  Google Scholar 

  79. 79

    Mackay, G. & Dunlop, J. C. The cerebral lesions in a case of complete acquired colour-blindness. Scot. Med. Surg. J. 5, 503–512 (1899).

    Google Scholar 

  80. 80

    Robertson, I. H., & Murre, J. M. J. Rehabilitation of brain damage: Brain plasticity and principles of guided recovery. Psychol. Bull. 125, 544–575 (1999).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Lomber, S. The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J. Neurosci. Meth. 86, 109–118 (1999).

    CAS  Article  Google Scholar 

  82. 82

    Fierro, B. et al. Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. Neuroreport 11, 1519–1521 (2000).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Kapur, N. Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain 119, 1775–1790 (1996).

    PubMed  Article  Google Scholar 

  84. 84

    Barbur, J., Watson, J. D. G., Frackowiak, R. S. J. & Zeki, S. M. Conscious visual perception without V1. Brain 116, 1293–1302 (1993).

    PubMed  Article  Google Scholar 

  85. 85

    Cowey, A. & Stoerig, P. The neurobiology of blindsight. Trends Neurosci. 14, 140–145 (1991).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Hotson, M., Braun, D., Herzberg, W. & Boman, D. Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vision Res. 34, 2115–2123 (1994).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Hupe, J. M. et al. Feedback connections act on the early part of the responses in monkey visual cortex. J. Neurophysiol. (in the press).

  88. 88

    Flitman, S. S. et al. Linguistic processing during repetitive transcranial magnetic stimulation. Neurology 50, 175–181 (1998).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Stewart, L. M., Frith, U., Meyer, B.-U. & Rothwell, J. TMS over BA37 impairs picture naming. Neuropsychologia (in the press).

  90. 90

    Topper, R., Mottaghy, F., Brugman, M., Noth, J. & Huber, W. Facilitation of picture naming by focal transcranial magnetic stimulation. Exp. Brain Res. 121, 371–378 (1998).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Young, M. P., Hilgetag, C. & Scannell, J. W. Models of paradoxical lesion effects and rules of inference for imputing function to structure in the brain. Neurocomputing 26, 933–938 (1999).

    Article  Google Scholar 

  92. 92

    Hilgetag, C. Kotter, R. & Young, M. P. Interhemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. Prog. Brain Res. 121, 121–141 (1999).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Young, M. P., Hilgetag, C. & Scannell, J. W. On imputing function to structure from the behavioural effects of brain lesions. Proc. R. Soc. Lond. B 355, 147–161 (2000).

    CAS  Google Scholar 

  94. 94

    Chicurel, M. Databasing the brain. Nature 406, 822–825 (2000).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    George, M. S. & Bellmaker, R. H. (eds) Transcranial Magnetic Stimulation in Neuropsychiatry (American Psychiatric Press, Washington DC, 2000).

    Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the support of The Royal Society, The Medical Research Council and the Dr Hadwen Research Trust.

Author information

Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The International Society for Transcranial Stimulation

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walsh, V., Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1, 73–80 (2000). https://doi.org/10.1038/35036239

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing