Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer: looking outside the genome

Abstract

The ‘gene-centric’ approach has produced a wealth of information about the origins and progression of cancer, and investigators seek a full compilation of altered gene expressions for tumour characterization and treatment. However, the cancer genome appears to be far more unstable than previously thought. It may therefore be prudent to augment gene-level approaches with supra-genomic strategies that circumvent the genomic variability of cancer cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diffusion constraints govern tumour growth.
Figure 2: Endothelial and tumour cells as targets.

References

  1. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

    CAS  Article  Google Scholar 

  2. Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    CAS  Article  Google Scholar 

  3. Moinfar, F. et al. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: Implications for tumorigenesis. Cancer Res. 60, 2562–2566 (2000).

    CAS  Google Scholar 

  4. Bissell, M. J. et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59, S1757–S1763 (1999).

    Google Scholar 

  5. Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA 96, 15121–15126 (1999).

    CAS  Article  Google Scholar 

  6. Strohman, R. C. The coming Kuhnian revolution in biology. Nature Biotechol. 15, 194–200 (1997).

    CAS  Article  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  Article  Google Scholar 

  8. Nurse, P. Reductionism: The ends of understanding. Nature 387, 657 (1997).

    CAS  Article  Google Scholar 

  9. Steeg, P. S. & Abrams, J. S. Cancer prognostics: past, present and p27. Nature Med. 3, 152–154 (1997).

    CAS  Article  Google Scholar 

  10. Szallasi, Z. Bioinformatics: Gene expression patterns and cancer. Nature Biotechol. 16, 1292–1293 (1998).

    CAS  Article  Google Scholar 

  11. Howard, K. The bioinformatics gold. Sci. Am. July, 58–63 (2000).

    Article  Google Scholar 

  12. Huang, S. & Ingber, D.E. The structural and mechanical complexity of cell-growth control. Nature Cell Biol. 1, E131–E138 (1999).

    CAS  Article  Google Scholar 

  13. Loeb, L. A. Many mutations in cancers. Cancer Surveys 28, 329–342 (1996).

    CAS  Google Scholar 

  14. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    CAS  Article  Google Scholar 

  15. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  Article  Google Scholar 

  16. Hahnfeldt, P., Panigrahy, D., Folkman, J. & Hlatky, L. Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response and post-vascular dormancy. Cancer Res. 59, 4770–4775 (1999).

    CAS  Google Scholar 

  17. Perez-Atayde, A. R. et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150, 815–821 (1997).

    CAS  Google Scholar 

  18. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  Article  Google Scholar 

  19. Good, D. J. et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl Acad. Sci. USA 87, 6624–6628 (1990).

    CAS  Article  Google Scholar 

  20. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  Google Scholar 

  21. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    CAS  Article  Google Scholar 

  22. Folkman, J. Is tissue mass regulated by vascular endothelial cells? Prostate as the first evidence. Endocrinology 139, 441–442 (1998).

    CAS  Article  Google Scholar 

  23. Feinstein, A. R. The santayana syndrome II: Problems in reasoning and learning about error. Perspect. Biol. Med. 41, 73–85 (1997).

    Article  Google Scholar 

  24. Sachs, L. The control of growth and differentiation in normal and leukemic blood cells. The 1989 Alfred P. Sloan Prize of the General Motors Cancer Research Foundation. Cancer 65, 2196–2206 (1990).

    CAS  Article  Google Scholar 

  25. Folkman, J. in Accomplishments in Cancer Research (eds Wells, S. A. Jr & Sharp, P. A.) 32–44 (J. B. Lippincott Williams and Wilkins, Pennsylvania 1998).

    Google Scholar 

  26. Perletti, G. et al. Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res. 60, 1793–1796 (2000).

    CAS  Google Scholar 

  27. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    CAS  Article  Google Scholar 

  28. Kerbel, R. S. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. BioEssays 13, 31–36 (1991).

    CAS  Article  Google Scholar 

  29. Streit, M. et al. Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc. Natl Acad. Sci. USA 96, 14888–14893 (1999).

    CAS  Article  Google Scholar 

  30. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Anderson, R. Kerbel and B. Vogelstein for reading the manuscript and for their comments. We thank C. Lamont for figure graphics.

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Cancer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Folkman, J., Hahnfeldt, P. & Hlatky, L. Cancer: looking outside the genome. Nat Rev Mol Cell Biol 1, 76–79 (2000). https://doi.org/10.1038/35036100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing