Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Walking on two heads: the many talents of kinesin

Abstract

The gallop of a race horse and the minute excursions of a cellular vesicle have one thing in common: they are based on the directional movement of proteins termed molecular motors — many trillions in the case of the horse, just a few in the case of the cell vesicle. These tiny machines take nanometre steps on a millisecond timescale to drive all biological movements. Over the past 15 years new biochemical and biophysical approaches have allowed us to take a giant step forward in understanding the molecular basis of motor mechanics.

Key Points

  • Most biological movements are accomplished by protein machines, termed molecular motors. The best-studied of these are the cytoskeletal motors, including myosin, which binds actin, and kinesin and dynein, which both bind microtubules. This review focuses primarily on kinesin.

  • The catalytic motor domain shows the highest homology between different cytoskeletal motors. It possesses a binding site for ATP and a binding site for the cytoskeletal element. There is little homology outside the catalytic domain. However, even though myosin and kinesin show no sequence similarity, their catalytic motor domains are closely related structurally.

  • Motors undergo conformational changes that are driven by ATP hydrolysis. This is translated into unidirectional movement by structural elements adjacent to the catalytic motor domain.

  • Within the kinesin superfamily, most motors move towards the plus end of microtubules. Non-claret disjunctional (Ncd), however, moves in the opposite direction, towards the minus end. Using artificial chimeric motors, the region responsible for determining the direction of movement has been mapped to the neck and neck linker regions

  • Kinesins take many steps along microtubules without falling off; this is termed ‘processivity’. This is achieved by precise coordination between the two kinesin heads, so that one head is always bound; this is tightly coupled to ATP hydrolysis. Single- headed motors can also be processive.

  • Regulation of kinesin activity is largely mediated by an intramolecular interaction between the head and tail, resulting in a compact conformation that inhibits the ATPase activity of the head. Cargo binding relieves this tail inhibition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of three molecular motor ‘prototypes’.
Figure 2: Overview of the domain organization, heavy chain molecular weight, polarity of movement and velocity of the main kinesin families.
Figure 3: Domain organization of the conventional kinesin heavy-chain dimer, showing the crystal structure of the catalytic domains and the neck96.
Figure 4: Crystal structures of dimeric Ncd and conventional kinesin.
Figure 5: Processive catalysis of conventional kinesin.
Figure 6: Model for how cargo binding might be linked to motor activation.

References

  1. Spudich, J. A. How molecular motors work. Nature 372, 515 –518 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division . Curr. Opin. Cell Biol. 10, 60– 73 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein, L. B. & Philp, A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Cyr, J. L., Pfister, K. K., Bloom, G. S., Slaughter, C. A. & Brady, S. T. Molecular genetics of kinesin light chains: generation of isoforms by alternative splicing. Proc. Natl Acad. Sci. USA 88, 10114–10118 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Wedaman, K. P., Knight, A. E., Kendrick-Jones, J. & Scholey, J. M. Sequences of sea urchin kinesin light chain isoforms. J. Mol. Biol. 231, 155–158 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, J. D. & Endow, S. A. Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays 18, 207–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Goodson, H. V., Kang, S. J. & Endow, S. A. Molecular phylogeny of the kinesin family of microtubule motor proteins. J. Cell Sci. 107, 1875– 1884 (1994).

    CAS  PubMed  Google Scholar 

  8. Goldstein, L. S. With apologies to Scheherazade: tails of 1001 kinesin motors. Annu. Rev. Genet. 27, 319–351 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Vale, R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291– 302 (1996).Succinct discussion of the surprising similarities between these protein families.

    Article  CAS  PubMed  Google Scholar 

  10. Lane, J. D. & Allan, V. Microtubule-based membrane movement . Biochim. Biophys. Acta. 1376, 27– 55 (1998).Excellent overview of the diverse cellular functions of motor proteins.

    Article  CAS  PubMed  Google Scholar 

  11. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sadhu, A. & Taylor, E. W. A kinetic study of the kinesin ATPase. J. Biol. Chem. 267, 11352– 11359 (1992).

    CAS  PubMed  Google Scholar 

  13. Gilbert, S. P. & Johnson, K. A. Pre-steady-state kinetics of the microtubule-kinesin ATPase. Biochemistry 33, 1951–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Romberg, L., Pierce, D. W. & Vale, R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell. Biol. 140, 1407– 1416 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grummt, M. et al. Importance of a flexible hinge near the motor domain in kinesin-driven motility. EMBO J. 17, 5536– 5542 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility . Curr. Biol. 10, 157–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Endow, S. A. et al. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13, 2708–2713 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Case, R. B., Pierce, D. W., Hom Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  22. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200– 1202 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Sablin, E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813– 816 (1998).Analysis of the crystallographic structure of dimeric ncd.

    Article  CAS  PubMed  Google Scholar 

  24. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin . Biochemistry 36, 16155– 16165 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Mandelkow, E. & Hoenger, A. Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hoenger, A. et al. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J. Cell Biol. 141, 419– 430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnal, I. & Wade, R. H. Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hirose, K., Cross, R. A. & Amos, L. A. Nucleotide-dependent structural changes in dimeric ncd molecules complexed to microtubules. J. Mol. Biol. 278, 389–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hoenger, A. et al. A new look at the microtubule binding patterns of dimeric kinesins. J. Mol. Biol. 297, 1087– 1103 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Becker, E. W. Kinetic equilibrium of forces and molecular events in muscle contraction. Proc. Natl Acad. Sci. USA 97, 157– 161 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 ( 1999).First demonstration of a myosin that moves in the opposite direction.

    Article  CAS  PubMed  Google Scholar 

  33. Gibbons, I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J. Biol. Chem. 241, 5590–5596 (1966).

    CAS  PubMed  Google Scholar 

  34. Vallee, R. B., Wall, J. S., Paschal, B. M. & Shpetner, H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein . Nature 332, 561–563 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Euteneuer, U., Koonce, M. P., Pfister, K. K. & Schliwa, M. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Nature 332, 176– 178 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Schliwa, M., Shimizu, T., Vale, R. D. & Euteneuer, U. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable. J. Cell Biol. 112, 1199 –1203 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry . Nature 365, 721–727 (1993).First demonstration that conventional kinesin moves in 8-nm steps.

    Article  CAS  PubMed  Google Scholar 

  38. Howard, J., Hudspeth, A. J. & Vale, R. Movement of microtubules by single kinesin molecules . Nature 342, 154–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Young, E. C., Mahtani, H. K. & Gelles, J. One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. Biochemistry 37, 3467–3479 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hancock, W. O. & Howard, J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718–721 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Hackney, D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994). Introduces the kinetic model of head–head interaction.

    Article  CAS  PubMed  Google Scholar 

  43. Ma, Y. Z. & Taylor, E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase . Biochemistry 37, 792– 799 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778– 784 (1999).Detailed analysis using an impressive array of techniques of the movements of the neck linker domain.

    Article  CAS  PubMed  Google Scholar 

  46. Lymn, R. W. & Taylor, E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  PubMed  Google Scholar 

  47. Mackey, A. T. & Gilbert, S. P. Moving a microtubule may require two heads: a kinetic investigation of monomeric Ncd. Biochemistry 39, 1346–1355 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  48. Pechatnikova, E. & Taylor, E. W. Kinetics processivity and the direction of motion of Ncd. Biophys. J. 77, 1003–1016 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foster, K. A. & Gilbert, S. P. Kinetic studies of dimeric Ncd: evidence that Ncd is not processive. Biochemistry 39 , 1784–1791 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Metah, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 ( 1999).

    Article  CAS  Google Scholar 

  51. Tabb, J. S., Molyneaux, B. J., Cohen, D. L., Kuznetsov, S. A. & Langford, G. M. Transport of ER vesicles on actin filaments in neurons by myosin V. J. Cell Sci. 111, 3221–3234 ( 1998).

    CAS  PubMed  Google Scholar 

  52. Rogers, S. L. et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J. Cell Biol. 146, 1265–1276 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  54. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin mechanics: piconewton forces and nanometre steps. Nature 368, 113– 119 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Aizawa, H. et al. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287–1296 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999). Experimental evidence for the directional movement of single monomeric kinesin molecules.

    Article  CAS  PubMed  Google Scholar 

  57. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97 , 640–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sakikabara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999).

    Article  CAS  Google Scholar 

  60. Thaler, C. D. & Haimo, L. T. Microtubules and microtubule motors: mechanisms of regulation. Int. Rev. Cytol. 164, 269–327 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Hurd, D. D., Stern, M. & Saxton, W. M. Mutation of the axonal transport motor kinesin enhances paralytic and suppresses Shaker in Drosophila. Genetics 142, 195–204 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gindhart, J. G. Jr, Desai, C. J., Beushausen, S., Zinn, K. & Goldstein, L. S. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, H., Toyoshima, I., Steuer, E. R. & Sheetz, M. P. Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 267, 20457–20464 (1992).

    CAS  PubMed  Google Scholar 

  64. Stenoien, D. L. & Brady, S. T. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brady, S. T. & Pfister, K. K. Kinesin interactions with membrane bounded organelles in vivo and in vitro. J. Cell Sci. 14, S103–S108 ( 1991).

    Article  Google Scholar 

  66. Verhey, K. J. et al. Light chain-dependent regulation of kinesin's interaction with microtubules. J. Cell Biol. 143, 1053 –1066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matthies, H. J., Miller, R. J. & Palfrey, H. C. Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J. Biol. Chem. 268, 11176–11187 ( 1993).

    CAS  PubMed  Google Scholar 

  68. Hollenbeck, P. J. Phosphorylation of neuronal kinesin heavy and light chains in vivo. J. Neurochem. 60, 2265–2275 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Khodjakov, A., Lizunova, E. M., Minin, A. A., Koonce, M. P. & Gyoeva, F. K. A specific light chain of kinesin associates with mitochondria in cultured cells. Mol. Biol. Cell 9, 333–343 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hisanaga, S. et al. The molecular structure of adrenal medulla kinesin. Cell Motil. Cytoskel. 12, 264–272 (1989).

    Article  CAS  Google Scholar 

  71. Amos, L. A. Kinesin from pig brain studied by electron microscopy. J. Cell Sci. 87, 105–111 ( 1987).

    CAS  PubMed  Google Scholar 

  72. Hackney, D., Levitt, J. & Suhan, J. Kinesin undergoes a 9 S to 6 S conformational transition . J. Biol. Chem. 267, 8696– 8701 (1992).

    CAS  PubMed  Google Scholar 

  73. Stock, M. F. et al. Formation of the compact conformer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin's tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293– 297 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Seiler, S. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nature Cell Biol. 2, 333– 338 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Coy, D. L., Wagenbach, M. & Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes . J. Biol. Chem. 274, 3667– 3671 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Hackney, D. D. & Stock, F. M. Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release. Nature Cell Biol. 2, 257–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Kirchner, J., Seiler, S., Fuchs, S. & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J. 18, 4404–4413 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348– 352 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386– 390 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, M. D., et al. Force and velocity measured for single molecules of RNA polymerase . Science 282, 902–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Uptain, S. M., Kane, C. M. & Chamberlin, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117– 172 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Gelles, J. & Landick, R. RNA polymerase as a molecular motor . Cell 93, 13–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Jager, J. & Pata, J. D. Getting a grip: polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 9, 21–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Kinosita, K. Jr, Yasuda, R., Noji, H., Ishiwata, S. & Yoshida, M. F1-ATPase: a rotary motor made of a single molecule. Cell 93, 21–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. DeRosier, D. J. The turn of the screw: the bacterial flagellar motor. Cell 93, 17–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597 –1608 (1989).

    Article  CAS  Google Scholar 

  92. May, R. C. et al. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9, 759–762 (1999).

    Article  CAS  Google Scholar 

  93. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926– 929 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Kull, F. J., Vale, R. D. & Fletterick, R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil. 19, 877–886 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  96. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule–dependent motility. Cell 91, 985–994 (1997).First crystallographic structure of dimeric conventional kinesin that provides the basis for all considerations of kinesin mechanics.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Euteneuer and K. Hahlen for valuable comments. Work in the authors’ laboratory is supported by the Deutsche Forschungsgemeinschaft, the Volkswagen Stiftung, and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

myosin

dynein

kinesin

ncd

myosin VI

myosin V

KIF1A

FURTHER INFORMATION

Kinesin home page

Structure and function of microtubules

Online animation: Kinesin stepping

ENCYCLOPEDIA OF LIFE SCIENCES

Dynein and kinesin

Cytoskeleton

Intracellular transport

ATP-binding motifs

Glossary

P-LOOP-TYPE ATP-BINDING SITE

‘Phosphate-binding loop’; a nucleotide-binding consensus motif (GXXXXGKT/S) at the ATP-binding site.

CROSSBRIDGE CYCLE

The sequence of structural changes of a myosin head coordinated with the hydrolysis of one molecule of ATP.

DUTY RATIO

The fraction of time that a motor molecule remains attached to the track during one full ATP hydrolysis cycle.

GLIDING ASSAY

Optical assay for the movement of cytoskeletal filaments over a ‘lawn’ of motor molecules attached to a coverslip.

OPTICAL TRAP ASSAY

A focused laser beam that traps refractile particles (for example, polystyrene beads) with attached motor molecules, allowing determination of step size and force per step.

RETAINING FORCE

Force exerted by a laser trap on a motor-carrying bead, moving along a microtubule. molecule of ATP.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woehlke, G., Schliwa, M. Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 1, 50–58 (2000). https://doi.org/10.1038/35036069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing