Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A tale of toroids in DNA metabolism

Abstract

A strikingly large number of the proteins involved in DNA metabolism adopt a toroidal ? or ring-shaped ? quaternary structure, even though they have completely unrelated functions. Given that these proteins all use DNA as a substrate, their convergence to one shape is probably not a coincidence. Ring-forming proteins may have been selected during evolution for advantages conferred by the toroidal shape on their interactions with DNA.

Key Points

  • A strikingly large number of proteins that interact with DNA assume a toroidal, or ring-shaped structure. These include sliding clamp proteins, which increase the lifetime of other proteins on DNA, helicases that unwind DNA, topisomerases that alter DNA structure, and many other proteins that mediate the processes of DNA replication, repair and recombination.

  • A common feature of these proteins is that their subunits are arranged in a closed ring, the centre of which is able to accommodate single stranded and/or duplex DNA. For many proteins, this property is proposed to allow high processivity on DNA through topological linkage.

  • Although some proteins such as human topoisomerase I bind DNA in the central cavity simply by opening up and closing around DNA, others require the help of ?molecular matchmakers? that link toroidal proteins and DNA by ATP-dependent reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular sliding clamps.
Figure 2: Circular helicases.
Figure 3: Circular recombination proteins.
Figure 4: Circular topoisomerases.
Figure 5: More circular proteins.

Similar content being viewed by others

References

  1. Boyer, P. D. The ATP synthase ? a splendid molecular machine. Annu. Rev. Biochem. 66, 717?749 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  2. Sigler, P. B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581?608 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295?317 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs, N. W., Cogdell, R. J., Freer, A. A. & Prince, S. M. Light-harvesting mechanisms in purple photosynthetic bacteria. Curr. Opin. Struct. Biol. 5, 794?797 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Hingorani, M. M. & O'Donnell, M. Toroidal proteins: running rings around DNA. Curr. Biol. 8, R83?R86 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hingorani, M. M. & O'Donnell, M. Sliding clamps: a (tail)ored fit. Curr. Biol. 10, R25? R29 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Baker, T. A. & Bell, S. P. Polymerases and the replisome: machines within machines. Cell 92, 295? 305 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fay, P. J., Johanson, K. O., McHenry, C. S. & Bambara, R. A. Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 256, 976?983 ( 1981).

    CAS  PubMed  Google Scholar 

  9. Tsurimoto, T. & Stillman, B. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc. Natl Acad. Sci. USA 87, 1023?1027 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Jarvis, T. C., Newport, J. W. & von Hippel, P. H. Stimulation of the processivity of the DNA polymerase of bacteriophage T4 by the polymerase accessory proteins. The role of ATP hydrolysis. J. Biol. Chem. 266, 1830? 1840 (1991).

    CAS  PubMed  Google Scholar 

  11. Stukenberg, P. T., Studwell-Vaughan, P. S. & O'Donnell, M. Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 266, 11328?11334 (1991). This study predicted that the β clamp encircles DNA before the solution of a crystal structure. This prediction was made on the basis of the observation that β could fall off linear DNA, but not circular DNA.

    CAS  PubMed  Google Scholar 

  12. Kong, X. P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425?437 (1992).The first crystal structure of a sliding clamp protein clarified greatly the mechanism by which clamps act as processivity factors for polymerase on DNA.

    Article  CAS  PubMed  Google Scholar 

  13. Yao, N. et al. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells 1, 101?113 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  14. Moarefi, I., Jeruzalmi, D., Turner, J., O'Donnell, M. & Kuriyan, J. Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J. Mol. Biol. 296, 1215?1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Shamoo, Y. & Steitz, T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99, 155? 166 (1999).Structure of a sliding clamp in complex with an interacting peptide from the DNA polymerase; this structure represents the first step towards determining the structure of a DNA replisome.

    Article  CAS  PubMed  Google Scholar 

  16. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233? 1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297? 306 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. (in the press).

  19. Lohman, T. M. & Bjornson, K. P. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169 ?214 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Karow, J. K., Wu, L. & Hickson, I. D. RecQ family helicases: roles in cancer and aging. Curr. Opin. Genet. Dev. 10, 32?38 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Reha-Krantz, L. J. & Hurwitz, J. The dnaB gene product of Escherichia coli. I. Purification, homogeneity, and physical properties. J. Biol. Chem. 253, 4043? 4050 (1978).

    CAS  PubMed  Google Scholar 

  22. Finger, L. R. & Richardson, J. P. Stabilization of the hexameric form of Escherichia coli. protein rho under ATP hydrolysis conditions . J. Mol. Biol. 156, 203? 219 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Egelman, H. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA 92, 3869?3873 (1995). The electron-microscope (EM) structure of a replicative hexameric DNA helicase provided insights into how these enzymes form a ring that encircles single-stranded DNA and catalyse unwinding of duplex DNA.

    Article  CAS  PubMed  Google Scholar 

  24. Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C. & Ellenberger, T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99, 167?177 (1999).The first crystal structure of a hexameric DNA helicase.

    Article  CAS  PubMed  Google Scholar 

  25. Dong, F., Gogol, E. P. & von Hippel, P. H. The phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate. J. Biol. Chem. 270, 7462?7473 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Barcena, M. et al. Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G40 P). J. Mol. Biol. 283, 809?819 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  27. San Martin, M. C., Gruss, C. & Carazo, J. M. Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. J. Mol. Biol. 268, 15?20 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, X., Jezewska, M. J., Bujalowski, W. & Egelman, E. H. The hexameric E. coli DnaB helicase can exist in different quaternary states. J. Mol. Biol. 259, 7? 14 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, X., Horiguchi, T., Shigesada, K. & Egelman, E. H. Three-dimensional reconstruction of transcription termination factor rho: Orientation of the N-terminal domain and visualization of an RNA-binding Site . J. Mol. Biol. 299, 1299? 1307 (2000).

    Article  CAS  Google Scholar 

  30. Stasiak, A. et al. The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA. Proc. Natl Acad. Sci. USA 91, 7618?7622 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  31. Sato, M. et al. Electron microscopic observation and single-stranded DNA binding activity of the Mcm4, 6, 7 complex. J. Mol. Biol. 300 , 421?431 (2000). A first view of the quaternary structure of the human MCM helicase that is required for initiation of DNA replication.

    Article  CAS  PubMed  Google Scholar 

  32. Karow, J. K., Newman, R. H., Freemont, P. S. & Hickson, I. D. Oligomeric ring structure of the Bloom's syndrome helicase. Curr. Biol. 9, 597?600 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  33. Chong, J. P., Hayashi, M. K., Simon, M. N., Xu, R. M. & Stillman, B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl Acad. Sci. USA 97, 1530?1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, X., Hingorani, M. M., Patel, S. S. & Egelman, E. H. DNA is bound within the central hole to one or two of the six subunits of the T7 DNA helicase. Nature Struct. Biol. 3, 740?743 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Morris, P. D. & Raney, K. D. DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164?5171 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Bujalowski, W. & Jezewska, M. J. Interactions of Escherichia coli primary replicative helicase DnaB protein with single-stranded DNA. The nucleic acid does not wrap around the protein hexamer . Biochemistry 34, 8513? 8519 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Fouts, E. T., Yu, X., Egelman, E. H. & Botchan, M. R. Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J. Biol. Chem. 274, 4447?4458 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Mastrangelo, I. A. et al. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 338, 658?662 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Yong, Y. & Romano, L. J. Benzo[a]pyrene-DNA adducts inhibit the DNA helicase activity of the bacteriophage T7 gene 4 protein. Chem. Res. Toxicol. 9, 179?187 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hacker, K. J. & Johnson, K. A. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36, 14080?14087 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  41. Raney, K. D., Carver, T. E. & Benkovic, S. J. Stoichiometry and DNA unwinding by the bacteriophage T4 41:59 helicase. J. Biol. Chem. 271, 14074 ?14081 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Nakai, H. & Richardson, C. C. Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein?protein and protein?DNA interactions involved in RNA-primed DNA synthesis. J. Biol. Chem. 261, 15208?15216 ( 1986).

    CAS  PubMed  Google Scholar 

  43. Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84, 643?650 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Yuzhakov, A., Turner, J. & O'Donnell, M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86, 877?886 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Hingorani, M. M. & Patel, S. S. Interactions of bacteriophage T7 DNA primase/helicase protein with single-stranded and double-stranded DNAs. Biochemistry 32, 12478 ?12487 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Jezewska, M. J., Kim, U. S. & Bujalowski, W. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer. Biochemistry 35 , 2129?2145 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Hingorani, M. M., Washington, M. T., Moore, K. C. & Patel, S. S. The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. Proc. Natl Acad. Sci. USA 94, 5012?5017 (1997). Rapid kinetic analysis of the NTPase activity of a hexameric helicase yielded a model mechanism for helicase-catalysed sequential TTP hydrolysis (similar to F 1 -ATPase) that may be coupled to stepwise DNA unwinding.

    Article  CAS  PubMed  Google Scholar 

  48. Stitt, B. L. & Xu, Y. Sequential hydrolysis of ATP molecules bound in interacting catalytic sites of Escherichia coli transcription termination protein Rho. J. Biol. Chem. 273, 26477?26486 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Kovall, R. & Matthews, B. W. Toroidal structure of lambda-exonuclease . Science 277, 1824?1827 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Passy, S. I., Yu, X., Li, Z., Radding, C. M. & Egelman, E. H. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins. Proc. Natl Acad. Sci. USA 96, 4279?4284 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Mythili, E., Kumar, K. A. & Muniyappa, K. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking. Gene 182, 81?87 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  52. Poteete, A. R., Sauer, R. T. & Hendrix, R. W. Domain structure and quaternary organization of the bacteriophage P22 Erf protein. J. Mol. Biol. 171, 401?418 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Thresher, R. J., Makhov, A. M., Hall, S. D., Kolodner, R. & Griffith, J. D. Electron microscopic visualization of RecT protein and its complexes with DNA. J. Mol. Biol. 254, 364?371 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ando, R. A. & Morrical, S. W. Single-stranded DNA binding properties of the UvsX recombinase of bacteriophage T4: binding parameters and effects of nucleotides. J. Mol. Biol. 283, 785?796 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457?470 (1992); erratum in Cell 71, 180 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570? D603 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Yu, X. & Egelman, E. H. The RecA hexamer is a structural homologue of ring helicases. Nature Struct. Biol. 4 , 101?104 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Baumann, P., Benson, F. E., Hajibagheri, N. & West, S. C. Purification of human Rad51 protein by selective spermidine precipitation . Mutat. Res. 384, 65?72 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Passy, S. I. et al. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl Acad. Sci. USA 96, 10684? 10688 (1999).EM structure of this ring-shaped human RecA homologue opens up new possible mechanisms of action of RecA-like proteins in homologous recombination or other metabolic processes.

    Article  CAS  PubMed  Google Scholar 

  60. Stasiak, A. Z. et al. The human Rad52 protein exists as a heptameric ring. Curr. Biol. 10, 337?340 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Rattray, A. J. & Symington, L. S. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139, 45?56 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Baumann, P. & West, S. C. Heteroduplex formation by human Rad51 protein: effects of DNA end-structure, hRPA and hRad52. J. Mol. Biol. 291, 363?374 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Sung, P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272, 28194?28197 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. New, J. H., Sugiyama, T., Zaitseva, E. & Kowalczykowski, S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391, 407?410 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635?692 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Lima, C. D., Wang, J. C. & Mondragon, A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367, 138?146 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Mondragon, A. & DiGate, R. The structure of Escherichia coli DNA topoisomerase III. Structure Fold. Des. 7, 1373?1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J. & Hol, W. G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279, 1504?1513 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. & Champoux, J. J. A model for the mechanism of human topoisomerase I. Science 279, 1534?1541 (1998).The series of crystal structures of human topoisomerase I in references 68 and 69 provide detailed snapshots of the process by which this enzyme catalyses changes in the topology of DNA.

    Article  CAS  PubMed  Google Scholar 

  70. Berger, J. M. Type II DNA topoisomerases. Curr. Opin. Struct. Biol. 8, 26?32 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Baird, C. L., Harkins, T. T., Morris, S. K. & Lindsley, J. E. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc. Natl Acad. Sci. USA 96, 13685? 13690 (1999).A rapid kinetic study of the topoisomerase II reaction yields a model mechanism by which this enzyme couples ATP binding and hydrolysis to catenation or decatenation of duplex DNA.

    Article  CAS  PubMed  Google Scholar 

  72. Berger, J. M., Gamblin, S. J., Harrison, S. C. & Wang, J. C. Structure and mechanism of DNA topoisomerase II. Nature 379, 225?232 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. Y. et al. Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications. EMBO J. 19, 1119?1129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Antson, A. A. et al. Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401, 235? 242 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Valpuesta, J. M., Fernandez, J. J., Carazo, J. M. & Carrascosa, J. L. The three-dimensional structure of a DNA translocating machine at 10 Å resolution. Structure Fold. Des. 7, 289? 296 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kasai, M. et al. The translin ring specifically recognizes DNA ends at recombination hot spots in the human genome. J. Biol. Chem. 272, 11402?11407 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Valle, M., Valpuesta, J. M., Carrascosa, J. L., Tamayo, J. & Garcia, R. The interaction of DNA with bacteriophage phi 29 connector: a study by AFM and TEM. J. Struct. Biol. 116, 390?398 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Turnquist, S., Simon, M., Egelman, E. & Anderson, D. Supercoiled DNA wraps around the bacteriophage phi 29 head?tail connector. Proc. Natl Acad. Sci. USA 89, 10479? 10483 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. West, S. C. Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213?244 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Aoki, K., Suzuki, K., Ishida, R. & Kasai, M. The DNA binding activity of Translin is mediated by a basic region in the ring-shaped structure conserved in evolution. FEBS Lett. 443, 363?366 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Redinbo, M. R., Stewart, L., Champoux, J. J. & Hol, W. G. Structural flexibility in human topoisomerase I revealed in multiple non-isomorphous crystal structures. J. Mol. Biol. 292, 685 ?696 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Turner, J., Hingorani, M. M., Kelman, Z. & O'Donnell, M. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18, 771?783 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaboord, B. F. & Benkovic, S. J. Accessory proteins function as matchmakers in the assembly of the T4 DNA polymerase holoenzyme. Curr. Biol. 5, 149? 157 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Mossi, R. & Hubscher, U. Clamping down on clamps and clamp loaders ? the eukaryotic replication factor C. Eur. J. Biochem. 254, 209?216 ( 1998).

    CAS  PubMed  Google Scholar 

  85. Hingorani, M. M. & O'Donnell, M. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 273, 24550?24563 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Naktinis, V., Onrust, R., Fang, L. & O'Donnell, M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J. Biol. Chem. 270, 13358?13365 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Hingorani, M. M., Bloom, L. B., Goodman, M. F. & O'Donnell, M. Division of labor-sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA. EMBO J. 18, 5131 ?5144 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahnert, P., Moore Picha, K. & Patel, S. S. A ring-opening mechanism for single-stranded DNA binding in the central channel of T7 helicase?primase protein. EMBO J. 19, 3418?3427 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarumi, K. & Yonesaki, T. Functional interactions of gene 32, 41, and 59 proteins of bacteriophage T4. J. Biol. Chem. 270, 2614?2619 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Allen, G. C. Jr & Kornberg, A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 266, 22096? 22101 (1991).

    CAS  PubMed  Google Scholar 

  91. Perkins, G. & Diffley, J. F. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders . Mol. Cell 2, 23?32 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Herbig, U., Marlar, C. A. & Fanning, E. The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol. Biol. Cell 10, 2631?2645 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morrical, S. W., Hempstead, K. & Morrical, M. D. The gene 59 protein of bacteriophage T4 modulates the intrinsic and single-stranded DNA-stimulated ATPase activities of gene 41 protein, the T4 replicative DNA helicase. J. Biol. Chem. 269, 33069?33081 (1994).

    CAS  PubMed  Google Scholar 

  94. Learn, B. A., Um, S. J., Huang, L. & McMacken, R. Cryptic single-stranded-DNA binding activities of the phage lambda P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA. Proc. Natl Acad. Sci. USA 94 , 1154?1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Carter, D. M. & Radding, C. M. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J. Biol. Chem. 246, 2502?2512 (1971).

    CAS  PubMed  Google Scholar 

  96. Fang, L., Davey, M. J. & O'Donnell, M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin . Mol. Cell 4, 541?553 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Dutta, A. & Bell, S. P. Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Biol. 13, 293?332 (1997).

    Article  CAS  Google Scholar 

  98. Mechanic, L. E., Hall, M. C. & Matson, S. W. Escherichia coli DNA helicase II is active as a monomer. J. Biol. Chem. 274, 12488? 12498 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75? 84 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Petit, M. A. et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol. 29, 261?273 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Zuccola, H. J., Filman, D. J., Coen, D. M. & Hogle, J. M. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol. Cell 5, 267?278 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  102. Fan, L., Sanschagrin, P. C., Kaguni, L. S. & Kuhn, L. A. The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc. Natl Acad. Sci. USA 96, 9527?9532 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Doublie, S. & Ellenberger, T. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol. 8, 704?712 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Johnson, A. A., Tsai, Y., Graves, S. W. & Johnson, K. A. Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39, 1702?1708 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Sanders, G. M., Kassavetis, G. A. & Geiduschek, E. P. Dual targets of a transcriptional activator that tracks on DNA. EMBO J. 16, 3124? 3132 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leipe, D. D., Aravind, L., Grishin, N. V. & Koonin, E. V. The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res. 10, 5?16 ( 2000).A comprehensive phylogenetic and structural analysis of RecA-like proteins and the DnaB family of hexameric helicases indicates that these proteins share a common ancestor that had the ability to form oligomeric rings and undergo NTP-driven conformational changes.

    CAS  PubMed  Google Scholar 

  107. Egelman, E. A ubiquitous structural core. Trends Biochem. Sci. 25, 183?184 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all researchers who provided images, including J. Kuriyan and D. Jeruzalmi (E. coli β clamp, yPCNA, T4 gp45); Y. Shamoo and T. Steitz (RB69 clamp and polymerase); T. Ellenberger (T7 gp4); E. Gogol (T4 gp41); E. Egelman (E. coli DnaB, RuvB, rho, BPV E1, phage λ β protein, hDmc1, hRad52); C. San Martin (SV40 T antigen); I. Hickson (BLM helicase); J. Chong and B. Stillman (M. th MCM); Y. Ishimi (human MCM); P. Ahnert (T7 gp4 on DNA); R. Kovall and B. Matthews (phage λ exonuclease); M. Redinbo and W. Hol (human topoI); A. Mondragón (E. coli topoI and topoIII); J. Wang (yeast topoII); J. Y. Lee and S. W. Suh (DNA ligase); A. Anston (TRAP); J. Carrascosa (φ29 connector) and M. Kasai (human translin). We also thank M. Davey and K. Picha for discussions. Work supported by a grant from the NIH to M.O.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Bloom's syndrome

BLM helicase

DMC1

RAD52

translin

Cdc6

hPCNA

Fen1

DNA ligase 1

DNA methyltransferase

XPG

RAD51

RFC complex

human topisomerases

F1-ATPase

DnaB helicase

DnaC

Rho

RecA

E. coli topisomerase

S. cerevisiae topisomerase II

ENCYCLOPEDIA OF LIFE SCIENCES

DNA helicases

Polymerase processivity

Glossary

PROCESSIVITY

The ability of an enzyme to catalyse more than one turnover before releasing the substrate or product of the reaction.

REPLISOME

The multi-protein assembly at the junction of the DNA replication fork.

STRAND EXCHANGE

The process by which a single DNA strand switches from one duplex DNA molecule to base pair with a complementary strand from a second, homologous duplex DNA molecule.

HOMOLOGOUS RECOMBINATION

The process by which segments of DNA are exchanged between two DNA duplexes that share high sequence similarity.

CATENATION/DECATENATION

Topoisomerases catenate (join) or decatenate (separate) two circular DNA molecules by cutting one DNA strand, passing a second strand through the break, and resealing the break in DNA.

MOLECULAR MATCHMAKER

A macromolecule that increases the affinity of two or more other molecules for each other, usually through a reaction using energy from ATP binding and hydrolysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hingorani, M., O'Donnell, M. A tale of toroids in DNA metabolism. Nat Rev Mol Cell Biol 1, 22–30 (2000). https://doi.org/10.1038/35036044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing