Letter | Published:

A vertebrate globin expressed in the brain

Nature volume 407, pages 520523 (28 September 2000) | Download Citation

Subjects

Abstract

Haemoglobins and myoglobins constitute related protein families that function in oxygen transport and storage in humans and other vertebrates1,2. Here we report the identification of a third globin type in man and mouse. This protein is predominantly expressed in the brain, and therefore we have called it neuroglobin. Mouse neuroglobin is a monomer with a high oxygen affinity (half saturation pressure, P50 ≈ 2 torr). Analogous to myoglobin, neuroglobin may increase the availability of oxygen to brain tissue. The human neuroglobin gene (NGB), located on chromosome 14q24, has a unique exon–intron structure. Neuroglobin represents a distinct protein family that diverged early in metazoan evolution, probably before the Protostomia/Deuterostomia split.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Hemoglobin: Structure, function, evolution, and pathology (Benjamin/Cummings, Menlo Park, California, 1983).

  2. 2.

    Biochemistry (Freeman, New York, 1995).

  3. 3.

    A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl Acad. Sci. USA 93, 5675– 5679 (1996).

  4. 4.

    et al. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc. Natl Acad. Sci. USA 96, 10495–10500 (1999).

  5. 5.

    , & dbEST–database for “expressed sequence tags”. Nature Genet. 4, 332– 333 (1993).

  6. 6.

    , & Comparative analysis of 1196 orthologous mouse and human full length mRNA and protein sequences. Genome Res. 6, 846–857 (1996).

  7. 7.

    Spectral characterization of human hemoglobin and its derivatives. Methods Enzymol. 52, 456–463 (1978).

  8. 8.

    & The heme protein in ganglia of Spisula solidissima. Biochim. Biophys. Acta 78, 562–563 ( 1963).

  9. 9.

    & Did the ancestral globin gene of plants and animals contain only two introns? Trends Biochem. Sci. 17, 486–488 ( 1992).

  10. 10.

    Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 ( 1981).

  11. 11.

    , , , & A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205, 151–160 ( 1997).

  12. 12.

    , & Molecular evolution: recent cases of spliceosomal intron gain? Curr. Biol. 8, R560– R563 (1998).

  13. 13.

    , & Darwinian evolution in the genealogy of haemoglobin. Nature 253, 603–608 (1975).

  14. 14.

    et al. Globin and globin gene structure of the nerve myoglobin of Aphrodite aculeata. J. Biol. Chem. 271, 19865–19870 (1996).

  15. 15.

    & cDNA cloning and predicted amino acid sequence of Glycera dibranchiata monomer hemoglobin IV. Biochemistry 28, 8525– 8530 (1989).

  16. 16.

    et al. The cDNA sequences encoding two components of the polymeric fraction of the intracellular hemoglobin of Glycera dibranchiata. J. Biol. Chem. 265, 21843–21851 (1990).

  17. 17.

    , , , & The heterogeneity of the polymeric intracellular hemoglobin of Glycera dibranchiata and the cDNA-derived amino acid sequence of one component. Biochim. Biophys. Acta 1041, 117–122 (1990).

  18. 18.

    , & Haemoglobins of invertebrate tissues - nerve haemoglobins of Aphrodite, Aplysia, and Halosydna. Biochem. J. 96, 363–371 ( 1965).

  19. 19.

    Functions of cytoplasmatic hemoglobins and myohemerythrin. Adv. Comp. Environ. Physiol. 13, 60–85 (1992).

  20. 20.

    , , , & The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus. J. Biol. Chem. 273, 16998–17011 (1998).

  21. 21.

    & Extended oxygen delivery from the nerve hemoglobin of Tellina alternata (Bivalvia). Science 232, 90–92 ( 1986).

  22. 22.

    & Physiologie des Menschen (Springer, Berlin, Heidelberg, New York, 1997 ).

  23. 23.

    & A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

  24. 24.

    , , & Aminoacylsilane-coated glass slides as support for in situ hybridisation of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem. J. 18, 271–276 (1986).

  25. 25.

    , , & Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

  26. 26.

    , , , & The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-82 (1997).

  27. 27.

    & A globin gene of Drosophila melanogaster . Mol. Biol. Evol. 16, 1809– 1811 (1999).

  28. 28.

    PHYLIP (Phylogeny Inference Package) Version 3.5c (Dept Genetics, Univ. Washington, Seattle, 1993).

Download references

Acknowledgements

We wish to thank R. Gebhardt and N. Hellmann for their help with the oxygen-binding studies; G. Ungerechts for his assistance in the cloning; E. Jaenicke for running the FPLC; L. Moens and S. Dewilde for sharing experimental protocols and for discussions; and H. Decker, E. R. Schmidt and J. Markl for excellent working facilities, continuous support and valuable suggestions. This work is supported by the Deutsche Forschungsgemeinschaft (DFG) and the Naturwissenschaftlich-Medizinisches Forschungszentrum (NMFZ) Mainz.

Author information

Author notes

    • Thorsten Burmester
    •  & Thomas Hankeln

    These authors contributed equally to this work

Affiliations

  1. *Institutes of Zoology,

    • Thorsten Burmester
  2. ‡Molecular Genetics, Biosafety Research and Consulting, and

    • Bettina Weich
    •  & Thomas Hankeln
  3. §Physiological Chemistry, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany

    • Sigrid Reinhardt

Authors

  1. Search for Thorsten Burmester in:

  2. Search for Bettina Weich in:

  3. Search for Sigrid Reinhardt in:

  4. Search for Thomas Hankeln in:

Corresponding author

Correspondence to Thorsten Burmester.

Supplementary information

Image files

  1. 1.

    Figure 1

  2. 2.

    Figure 2

  3. 3.

    Figure 3

Rich text format

  1. 1.

    Figure legends

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35035093

Further reading Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.