Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions

Abstract

The dry valleys of Antarctica are some of the oldest terrestrial surfaces on the Earth. Despite much study of soil weathering and development, ecosystem dynamics and the occurrence of life in these extreme environments1,2,3, the reasons behind the exceptionally high salt content of the dry-valley soils4,5,6 have remained uncertain. In particular, the origins of sulphate are still controversial; proposed sources include wind-blown sea salt5,7, chemical weathering8, marine incursion9, hydrothermal processes10 and oxidation of biogenic sulphur in the atmosphere1. Here we report measurements of δ18O and δ17O values of sulphates from a range of dry-valley soils. These sulphates all have a large positive anomaly11 of 17O, of up to 3.4‰. This suggests that Antarctic sulphate comes not just from sea salt (which has no anomaly of 17O) but also from the atmospheric oxidation of reduced gaseous sulphur compounds, the only known process that can generate the observed 17O anomaly. This source is more prominent in high inland soils, suggesting that the distributions of sulphate are largely explained by differences in particle size and transport mode which exist between sea-salt aerosols and aerosols formed from biogenic sulphur emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sulphate δ18O and Δ17O values for soils from different climatic regions in Antarctic dry valleys.

Similar content being viewed by others

References

  1. Campbell, I. B. & Claridge, G. G. C. Antarctica: Soils, Weathering Processes And Environment (Elsevier, Amsterdam, 1987).

    Google Scholar 

  2. Priscu, J. C. Ecosystem Dynamics In A Polar Desert; The McMurdo Dry Valleys, Antarctica (American Geophysical Union, Washington DC, 1998).

    Book  Google Scholar 

  3. Gibson, E. K., Wentworth, S. J. & McKay, D. S. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of Martian weathering processes. J. Geophys. Res. A 88, 912– 928 (1983).

    Article  Google Scholar 

  4. Claridge, G. G. C. & Campbell, I. B. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci. 123, 377–384 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Key, J. R. & Williams, K. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim. Cosmochim. Acta 45, 2299–2309 ( 1981).

    Article  ADS  CAS  Google Scholar 

  6. Bockheim, J. G. Properties and classification of cold desert soils from Antarctica. Soil Sci. Soc. Am. J. 61, 224–231 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Torii, T., Yamagata, N., Ossaka, J. & Murata, S. A view on the formation of saline waters in the Dry Valleys. Mem. Natl Inst. Polar Res., Spec. Issue (Jpn) 13, 22–33 (1979).

    CAS  Google Scholar 

  8. Linkletter, G. O. Weathering and soil formation in the dry valleys of southern Victoria Land. Possible origin for the salts in the soils. Antarct. Geol. Geophys., Symp. Antarct. Geol. Solid Earth Geophys. B 1, 441– 446 (1972).

    Google Scholar 

  9. Nakai, N., Kiyosu, Y., Wada, H. & Takimoto, M. Stable isotope studies of salts and water from Dry Valleys, Antarctica. I. Origin of salts and water, and the geologic history of Lake Vanda. Mem. Natl Inst. Polar Res., Spec. Issue (Jpn) 4, 30– 44 (1975).

    CAS  Google Scholar 

  10. Takamatsu, N., Kato, N., Matsumoto, G. I. & Torii, T. Salt origin viewed from lithium distributions in lake and pond waters in the McMurdo Dry Valleys, Antarctica. Verh. Int. Verein. Theor. Angew. Limnol. 25, 954–956 ( 1993).

    CAS  Google Scholar 

  11. Clayton, R. N., Grossman, L. & Mayeda, T. K. A component of primitive nuclear composition in carbonaceous chondrites. Science 182, 485– 488 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Bao, H. & Thiemens, M. H. Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous analysis of δ18O and δ17O. Anal. Chem. 72, 4029–4032 (2000).

    Article  CAS  Google Scholar 

  13. Bao, H. et al. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176– 178 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Lee, C. C. -W. & Thiemens, M. H. δ17O and δ18O measurements of atmospheric sulfate from a coastal and high alpine regions: A mass independent isotopic anomaly. J. Geophys. Res. (submitted).

  15. Thiemens, M. H. Atmosphere science- Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Savarino, J., Lee, C. -W. C. & Thiemens, M. H. Laboratory oxygen isotopic study of atmospheric S(IV) oxidation: origin of the mass independent oxygen isotopic anomaly in atmospheric sulfates and other sulfate deposits. J. Geophys. Res. (in the press).

  17. Legrand, M. Sulphur-derived species in polar ice; a review. Ice Core Studies Glob. Biogeochem. Cycles 30, 91–119 (1995).

    Article  CAS  Google Scholar 

  18. Prospero, J. M., Savoie, D. L., Saltzman, E. S. & Larsen, R. Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica. Nature 350, 221– 223 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Minikin, A. et al. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J. Geophys. Res. 103, 10975–10990 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Bao, H., Michalski, G. & Thiemens, M. H. Sulfate oxygen-17 anomalies in desert varnishes. Geochim. Cosmochim. Acta (in the press).

  21. Schafer, J. et al. Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth Planet. Sci. Lett. 167, 215–226 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Petit, J. R., Briat, M. & Royer, A. Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293, 391– 394 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Cunningham, J. & Waddington, E. D. Air flow and dry deposition of non-sea salt sulfate in Polar firn: paleoclimatic implications. Atmos. Environ. A 27, 2943– 2956 (1993).

    Article  ADS  Google Scholar 

  24. Bockheim, J. G. Relative age and origin of soils in eastern Wright Valley, Antarctica. Soil Sci. 128, 142–153 ( 1979).

    Article  ADS  CAS  Google Scholar 

  25. Claridge, G. G., Campbell, I. B. & Balks, M. R. in Ecosystem Processes In Antarctic Ice-Free Landscapes (eds Howard-Williams, C. & Hawes, I.) 137– 143 (1997).

    Google Scholar 

  26. Graham, I. J., Ditchburn, R. G., Sparks, R. J. & Whitehead, N. E. 10Be investigations of sediments, soils and loess at GNS. Nucl. Instrum. Methods. Phys. Res. B 123, 307– 318 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

    Google Scholar 

  28. Welch, K. A., Mayewski, P. A., Whitlow, S. I. Methanesulfonic acid in coastal Antarctic snow related to sea-ice extent. Geophys. Res. Lett. 20, 443–446 (1993).

    Article  ADS  Google Scholar 

  29. Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F. & Wolff, E. W. Atmospheric near-surface nitrate at coastal Antarctic sites. J. Geophys. Res. A 103, 11007– 11020 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Farquhar, J., Savarino, J., Jackson, T. L. & Thiemens, M. H. Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 404, 50– 52 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. S. Sheppard for discussion on his recent isotopic data for sulphate and nitrate in Antarctic soils, and J. Savarino for comments. We thank NASA and the NSF for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, H., Campbell, D., Bockheim, J. et al. Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions. Nature 407, 499–502 (2000). https://doi.org/10.1038/35035054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035054

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing