Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single photons on demand from a single molecule at room temperature


The generation of non-classical states of light1 is of fundamental scientific and technological interest. For example, ‘squeezed’ states2 enable measurements to be performed at lower noise levels than possible using classical light. Deterministic (or triggered) single-photon sources exhibit non-classical behaviour in that they emit, with a high degree of certainty, just one photon at a user-specified time. (In contrast, a classical source such as an attenuated pulsed laser emits photons according to Poisson statistics.) A deterministic source of single photons could find applications in quantum information processing3, quantum cryptography4 and certain quantum computation problems5. Here we realize a controllable source of single photons using optical pumping of a single molecule in a solid. Triggered single photons are produced at a high rate, whereas the probability of simultaneous emission of two photons is nearly zero—a useful property for secure quantum cryptography. Our approach is characterized by simplicity, room temperature operation and improved performance compared to other triggered sources of single photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the experimental measurements with images of single molecules.
Figure 2: Characterization of the average time structure of the source.
Figure 3: Determination of p (1).
Figure 4: Second-order intensity correlation function of the emitted photons.

Similar content being viewed by others


  1. Meystre, P. & Sargent, M. III Elements of Quantum Optics (Springer, Berlin, 1991).

    Book  Google Scholar 

  2. Drummond, P. D. Quantum Squeezing (Springer, Berlin, 1999).

    MATH  Google Scholar 

  3. Special issue on quantum information. Phys. World 11(3), (1998).

  4. Bennett, C. H., Brassard, G. & Ekert, A. K. Quantum cryptography. Sci. Am. 267(4), 50–57 (1992).

    Article  Google Scholar 

  5. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Parkins, A. S., Marte, P., Zoller, P., Carnal, O. & Kimble, H. J. Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51, 1578 –1596 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Kuhn, A., Hennrich, M., Bondo, T. & Rempe, G. Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Imamoglu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Imamoglu, A. & Yamamoto, Y. Turnstile device for heralded single photons: coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. Phys. Rev. Lett. 72, 210–213 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A Single-photon turnstile device. Nature 397, 500– 503 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Brunel, C., Lounis, B., Tamarat, P. & Orrit, M. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Xie, X. S. & Trautman, J. K. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Ambrose, W. P., Goodwin, P. M., Martin, J. C. & Keller, R. A. Single-molecule detection and photochemistry on a surface using near-field optical-excitation. Phys. Rev. Lett. 72, 160–163 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Ambrose, W. P. et al. Fluorescence photon antibunching from single molecules on a surface. Chem. Phys. Lett. 269, 365– 370 (1997).

    Article  ADS  CAS  Google Scholar 

  17. De Martini, F., Di Giuseppe, G. & Marrocco, M. Phys. Rev. Lett. 76, 900– 903 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Kiston, S. C., Jonsson, P., Rarity, J. G. & Tapster, P. R. Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A 58, 620– 627 (1998).

    Article  ADS  Google Scholar 

  19. Fleury, L., Sick, B., Zumofen, G., Hecht, B. & Wild, U. P. High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy. Mol. Phys. 95, 1333–1338 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Kulzer, F., Koberling, F., Christ, T., Mews, A. & Basche, T. Terrylene in p-terphenyl: single molecule experiments at room temperature. Chem. Phys. 247, 23–34 (1999).

    Article  CAS  Google Scholar 

  21. Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516– 1519 (1992).

    Article  ADS  Google Scholar 

  22. Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 ( 2000).

    Article  ADS  CAS  Google Scholar 

  23. Kummer, S., Basché, T. & Bräuchle, C. Terrylene in p-terphenyl: a novel single crystalline system for single molecule spectroscopy at low temperatures. Chem. Phys. Lett. 229, 309–316 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Plakhotnik, T., Moerner, W. E., Palm, V. & Wild, U. P. Single molecule spectroscopy: maximum emission rate and saturation intensity. Opt. Commun. 114, 83–88 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Buttler, W. T. et al. Quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283–3286 ( 1998).

    Article  ADS  CAS  Google Scholar 

  26. Short, H. & Mandel, L. Observation of sub-poissonian photon statistics. Phys. Rev. Lett. 51, 384– 387 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Mandel, L. Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 ( 1979).

    Article  ADS  CAS  Google Scholar 

  28. Miller, G. D. et al. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt. Lett. 22, 1834–1836 (1997).

    Article  ADS  CAS  Google Scholar 

Download references


We thank Lightwave Electronics for use of the mode-locked Nd-YAG laser, M. Fejer and M. Fayer for providing non-linear crystals, and the Stanford Synchrotron Radiation Laboratory for providing the pulse height analyser. B. L. thanks D. Wright for assistance and NATO for Fellowship support.

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Lounis, B., Moerner, W. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing