Faceted crystal growth in two dimensions

Article metrics

Abstract

CRYSTAL growth has attracted interest for centuries1. Three-dimensional crystals are usually faceted, but equilibrium thermodynamics prohibits faceting in two dimensions2: the one-dimensional perimeter of a two-dimensional crystal cannot exhibit long-range order at any non-zero temperature3. This need not, however, prevent facets from being stable dynamically during the growth process. Computer simulations have indeed produced nearly faceted two-dimensional crystals4,5. Here we describe the results of experiments on monolayers of a surfactant, sodium dodecyl sulphate (SDS), at the surface of an aqueous solution. Surface-tension measurements and fluorescence microscopy6–8 reveal a solid–liquid transition in the surface monolayer at fixed SDS bulk concentration, as the temperature is decreased. At low SDS con-centration, faceted monolayer crystals appear, although increasing the concentration induces a change to smoother growth morpho-logies. The faceted crystals become unstable as growth proceeds, the corners emitting filaments of various shapes. Some of these growth processes seem not to have three-dimensional analogues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kepler, J. De Nive Sexangula (G. Tampach, Frankfurt on Main, 1611).

  2. 2

    Gallavotti, G. Commun. Math. Phys. 27, 103–136 (1972).

  3. 3

    Landau, L. & Lifshitz, E. in Statistical Physics (MIR, Moscow).

  4. 4

    Savit, R. & Ziff, R. Phys. Rev. Lett. 55, 2515–2518 (1985).

  5. 5

    Meakin, P. Phys. Rev. A 38, 418–426 (1988).

  6. 6

    Peters, R. & Beck, K. Proc. natn. Acad. Sci. U.S.A. 80, 7183–7187 (1983).

  7. 7

    Lösche, M., Sackmann, E. & Möhwald, H. Ber. Bunsenges. Phys. Chem. 87, 848–852 (1983).

  8. 8

    Weis, R. M. & McConnell, H. M. Nature 310, 47–49 (1984).

  9. 9

    Fontell, K. Mol. Cryst. Liq. Cryst. 63, 59–82 (1981).

  10. 10

    Kekicheff, P. J. Colloid Interface Sci. 131, 133–152 (1989).

  11. 11

    Hayashi, S. & Ikeda, S. J. phys. Chem. 84, 744–751 (1980).

  12. 12

    Preston, W. C. J. phys. Chem. 52, 84–97 (1948).

  13. 13

    Hato, M. & Shinoda, K. J. phys. Chem. 77, 378–381 (1973).

  14. 14

    Adamson, A. W. Physical Chemistry of Surfaces (Wiley-Interscience, New York, 1982).

  15. 15

    Berge, B., Simon, A. J. & Libchaber, A. Phys. Rev. A 41, 6893–6900 (1990).

  16. 16

    Mullins, W. W. & Sekerka, R. F. J. appl. Phys. 35, 444–451 (1964).

  17. 17

    Ben-Jacob, E. & Garik, P. Nature 343, 523–530 (1990).

  18. 18

    Langer, J. S. Rev. mod. Phys. 52, 1–28 (1980).

  19. 19

    Gorodetski, A. F. & Saratovkin, D. D. Growth of Crystals (Consultants Bureau, Inc., New York, 1958).

  20. 20

    Miller, A., Knoll, W. & Möhwald, H. Phys. Rev. Lett. 56, 2633–2636 (1986).

  21. 21

    Heckl, W. M. & Möhwald, H. Ber. Bunsenges. Phys. Chem. 90, 1159–1163 (1986).

  22. 22

    Bercegol, H., Gallet, F., Langevin, D. & Meunier, J. J. Physique 50, 2277–2289 (1989).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berge, B., Faucheux, L., Schwab, K. et al. Faceted crystal growth in two dimensions. Nature 350, 322–324 (1991) doi:10.1038/350322a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.