Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromodomains are protein–RNA interaction modules

Abstract

In Drosophila, compensation for the reduced dosage of genes located on the single male X chromosome involves doubling their expression in relation to their counterparts on female X chromosomes1. Dosage compensation is an epigenetic process involving the specific acetylation of histone H4 at lysine 16 by the histone acetyltransferase MOF2,3,4,5. Although MOF is expressed in both sexes, it only associates with the X chromosome in males. Its absence causes male-specific lethality6. MOF is part of a chromosome-associated complex comprising male-specific lethal (MSL) proteins and at least one non-coding roX RNA7. How MOF is integrated into the dosage compensation complex is unknown. Here we show that association of MOF with the male X chromosome depends on its interaction with RNA. MOF specifically binds through its chromodomain to roX2 RNA in vivo. In vitro analyses of the MOF and MSL-3 chromodomains indicate that these chromodomains may function as RNA interaction modules. Their interaction with non-coding RNA may target regulators to specific chromosomal sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of MOF to the X chromosome is RNase-sensitive.
Figure 2: MOF binds roX2 RNA in vivo.
Figure 3: MOF interacts with RNA in vitro and in vivo through the chromodomain.
Figure 4: Chromodomain in MSL-3 is also sufficient for interaction with RNA in vitro.

Similar content being viewed by others

References

  1. Lucchesi, J. C. Dosage compensation in flies and worms: the ups and downs of X- chromosome regulation. Curr. Opin. Genet. Dev. 8, 179 –184 (1998).

    Article  CAS  Google Scholar 

  2. Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54, 21– 31 (1998).

    Article  CAS  Google Scholar 

  3. Bone, J. R. et al. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 8, 96–104 (1994).

    Article  CAS  Google Scholar 

  4. Akhtar, A. & Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyl transferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367–375 (2000).

    Article  CAS  Google Scholar 

  5. Smith, E. R. et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage. Mol. Cell. Biol 20, 312–318 ( 2000).

    Article  CAS  Google Scholar 

  6. Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J. C. Mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054– 2060 (1997).

    Article  CAS  Google Scholar 

  7. Lucchesi, J. C. Dosage compensation: roX marks the spot. Curr. Biol. 9, R807–R808 (1999).

    Article  CAS  Google Scholar 

  8. Meller, V. H., Wu, K. H., Roman, G., Kuroda, M. I. & Davis, R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88, 445–457 (1997).

    Article  CAS  Google Scholar 

  9. Amrein, H. & Axel, R. Genes expressed in neurons of adult male Drosophila. Cell 88, 459– 469 (1997).

    Article  CAS  Google Scholar 

  10. Kelley, R. L. et al. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98, 513–522 (1999).

    Article  CAS  Google Scholar 

  11. Copps, K. et al. Complex formation by the Drosophila MSL proteins: role of the MSL-2 RING finger in protein complex assembly. EMBO J. 17, 5409–5417 (1998).

    Article  CAS  Google Scholar 

  12. Merendino, L., Guth, S., Bilbao, D., Martinez, C. & Valcarcel, J. Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 402, 838–841 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Richter, L., Bone, J. R. & Kuroda, M. I. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1, 325–336 (1996).

    Article  CAS  Google Scholar 

  14. Stuckenholz, C., Kageyama, Y. & Kuroda, M. I. Guilt by association: non-coding RNAs, chromosome-specific proteins and dosage compensation in Drosophila. Trends Genet. 15, 454–458 ( 1999).

    Article  CAS  Google Scholar 

  15. Meller, V. H. et al. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol. 10, 136–143 (2000).

    Article  CAS  Google Scholar 

  16. Franke, A. & Baker, B. S. The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol. Cell 4, 117– 122 (1999).

    Article  CAS  Google Scholar 

  17. Weeks, K. Protein-facilitated RNA folding. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  18. Ivanova, A. V., Bonaduce, M. J., Ivanov, S. V. & Klar, A. J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet. 19, 192– 195 (1998).

    Article  CAS  Google Scholar 

  19. Ball, L. J. et al. Structure of the chromatin binding (chromo) domain from mouse modifier protein. EMBO J. 16, 2473– 2481 (1997).

    Article  CAS  Google Scholar 

  20. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043– 1061 (1988).

    Article  CAS  Google Scholar 

  21. Koonin, E. V., Zhou, S. & Lucchesi, J. C. The chromo superfamily: new members, duplication of the chromo domain and the possible role in delivering transcription regulators to chromatin. Nucleic Acids Res. 23, 4229 –4233 (1995).

    Article  CAS  Google Scholar 

  22. Gu, W., Szauter, P. & Lucchesi, J. C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22, 56–64 ( 1998).

    Article  CAS  Google Scholar 

  23. Pirrotta, V. Polycombing the genome: PcG, TrxG, and chromatin silencing. Cell 93, 333–336 ( 1998).

    Article  CAS  Google Scholar 

  24. Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. BioEssays 22, 124–137 (2000).

    Article  CAS  Google Scholar 

  25. Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus sequence pentamer. Curr. Biol. 10, 27–30 ( 2000).

    Article  CAS  Google Scholar 

  26. Messmer, S., Franke, A. & Paro, R. Analysis of the functional role of the polycomb chromo domain in Drosophila melanogaster. Genes Dev. 6, 1241–1254 (1992).

    Article  CAS  Google Scholar 

  27. Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).

    Article  CAS  Google Scholar 

  28. Eddy, S. Noncoding RNA genes. Curr. Opin. Genet. Dev. 9, 695–699 (1999).

    Article  CAS  Google Scholar 

  29. Panning, B. & Jaenisch, R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 93, 305 –308 (1998).

    Article  CAS  Google Scholar 

  30. Eils, R. et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell. Biol. 135, 1427–1440 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A. acknowledges support from the Human Frontier Science Program. We thank M. Kuroda for providing antibodies; T. Straub for GST control protein; D. Ostareck and G. Mengus for protocols; I. Vetter and C. Schwarzlose for technical assistance; and N. Sadoni for help with arranging images. We are also grateful to W. Hörz, S. Kass and members of the laboratory for critical reading of the manuscript and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, A., Zink, D. & Becker, P. Chromodomains are protein–RNA interaction modules. Nature 407, 405–409 (2000). https://doi.org/10.1038/35030169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030169

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing