Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superoxide dismutase as a target for the selective killing of cancer cells

Abstract

Superoxide dismutases (SOD) are essential enzymes that eliminate superoxide radical (O2-) and thus protect cells from damage induced by free radicals1,2,3. The active O2- production and low SOD activity in cancer cells3,4,5,6,7 may render the malignant cells highly dependent on SOD for survival and sensitive to inhibition of SOD. Here we report that certain oestrogen derivatives selectively kill human leukaemia cells but not normal lymphocytes. Using complementary DNA microarray and biochemical approaches, we identify SOD as a target of this drug action and show that chemical modifications at the 2-carbon (2-OH, 2-OCH3) of the derivatives are essential for SOD inhibition and for apoptosis induction. Inhibition of SOD causes accumulation of cellular O2- and leads to free-radical-mediated damage to mitochondrial membranes, the release of cytochrome c from mitochondria and apoptosis of the cancer cells. Our results indicate that targeting SOD may be a promising approach to the selective killing of cancer cells, and that mechanism-based combinations of SOD inhibitors with free-radical-producing agents may have clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective cytotoxicity of 2-ME against human leukaemia cells.
Figure 2: Effect of 2-ME on SOD expression and free-radical metabolism in leukaemia cells.
Figure 3: Inhibition of SOD by 2-ME.
Figure 4: Relationship between SOD activity and apoptosis in 2-ME-treated cells.
Figure 5: Cellular uptake and metabolism of 2-ME and its effect on mitochondrial membrane integrity.

Similar content being viewed by others

References

  1. Halliwell, B. & Gutterridge, J. M. C. Free Radicals in Biology and Medicine (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  2. Fridovich, I. Superoxide radical and superoxide dismutase. Annu. Rev. Biochem. 64, 97–112 ( 1995).

    Article  CAS  Google Scholar 

  3. Oberley, L. W. & Buettner, G. R. Role of superoxide dismutase in cancer: a review. Cancer Res 39, 1141 –1149 (1979).

    CAS  PubMed  Google Scholar 

  4. Dionisi, O., Galeotti, T., Terranova, T. & Azzi, A. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim. Biophys. Acta 403, 292–300 (1975).

    Article  CAS  Google Scholar 

  5. Marklund, S. L., Westman, N. G., Lundgren, E. & Roos, G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 42 , 1955–1961 (1982).

    CAS  PubMed  Google Scholar 

  6. Van Driel, B. E. & Van Noorden, C. J. Oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase activity for the discrimination between nonmalignant and malignant cells. J. Histochem. Cytochem. 47, 575– 582 (1999).

    Article  CAS  Google Scholar 

  7. Shulyakovskaya, T., Sumegi, L. & Gal, D. In vivo experimental studies on the role of free radicals in photodynamic therapy. I. Measurement of the steady state concentration of free radicals in tumor tissues of mice. Biochem. Biophys. Res. Commun. 95, 581–587 (1993).

    Article  Google Scholar 

  8. Cushman, M., He, H. -M., Katzenellenbogen, J. A., Lin, C. M. & Hamel, E. Synthesis, antitubulin and antimitotic activity, and cytotoxicity of analogs of 2-methoxyestradiol, an endogenous mammalian metabolite of estradiol that inhibits tubulin polymerization by binding to the colchicine binding site. J. Med. Chem. 38, 2041–2049 (1995).

    Article  CAS  Google Scholar 

  9. Mukhopadhyay, T. & Roth, J. A. Superinduction of wild-type p53 protein after 2-methoxyestradiol treatment of Ad5p53-transduced cells induces tumor cell apoptosis. Oncogene 17, 241–246 (1998).

    Article  CAS  Google Scholar 

  10. Fujimura, M. et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J. Neurosci. 19, 3414–3422 (1999).

    Article  CAS  Google Scholar 

  11. Bindokas, V. J., Jordan, J., Lee, C. C. & Miller, R. J. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci. 16, 1324–1336 (1996).

    Article  CAS  Google Scholar 

  12. Ukeda, H., Maeda, S., Ishii, T. & Sawamura, M. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-1-[(phenylamino)-carbonyl]-3,4-tetrazolium-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. 251, 206–209 (1997).

    Article  CAS  Google Scholar 

  13. Zwacka, R. M., Dudus, L., Epperly, M. W., Greenberger, J. S. & Engelhardt, J. F. Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum. Gene Ther. 9, 1381– 1386 (1998).

    Article  CAS  Google Scholar 

  14. Heiden, M. G. V., Chandel, N. S., Williamson, E. K., Schumacker, P. T. & Thompson, C. B. Bcl-X L regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637 (1997).

    Article  Google Scholar 

  15. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027– 2031 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Li, P. et al. Cytochrome c and ATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  17. Rigo, A., Viglino, P. & Rotilio, G. Kinetic study of O2- dismutation by bovine superoxide dismutase: evidence for saturation of the catalytic sites by O2-. Biochem. Biophys. Res. Commun. 63, 1013–1018 ( 1975).

    Article  CAS  Google Scholar 

  18. D'Amato, R. J., Lin, C. M., Flynn, E., Folkman, J. & Hamel, E. 2-methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl Acad. Sci. USA 91, 3964– 3968 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Fotsis, T. et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and supresses tumor growth. Nature 368 , 237–239 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Gutteridge, J. M., Rowley, D. A. & Halliwell, B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of ‘catalytic’ iron and anti-oxidant activity in extracellular fluids. Biochem. J. 206, 605–609 ( 1982).

    Article  CAS  Google Scholar 

  21. Hamana, K. et al. DNA strand scission by enzymatically reduced mitomycin C: evidence for participation of the hydroxyl radical in the DNA damage. Biochem. Int. 10, 301–309 (1985).

    CAS  PubMed  Google Scholar 

  22. Pervaiz, S., Ramalingam, J. K., Hirpara, J. L. & Clement, M. Superoxide anion inhibits drug-induced tumor cell death. FEBS Lett. 459, 343–348 ( 1999).

    Article  CAS  Google Scholar 

  23. Casppary, W. J., Niziak, C., Lanzo, D. A., Friedman, R. & Bachur, N. R. Bleomycin A2: a ferrous oxidase. Mol. Pharmacol. 16, 256–260 ( 1979).

    Google Scholar 

  24. Young, R. C., Ozols, R. F. & Myers, C. E. The anthracycline antineoplastic drugs. N. Engl. J. Med. 305, 139–153 (1981).

    Article  CAS  Google Scholar 

  25. Gajewski, E., Rao, G., Nackerdien, Z. & Dizdaroglu, M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry 29, 7876– 7882 (1990).

    Article  CAS  Google Scholar 

  26. Mohanty, J. G., Jaffe, J. S., Schulman, E. S. & Raible, D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133–141 (1997).

    Article  CAS  Google Scholar 

  27. Huang, P., Chubb, S. & Plunkett, W. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine: a mechanism for cytotoxicity. J. Biol. Chem. 265, 16617–16625 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Engelhardt and the Vector Core Facility of University of Iowa for Ad.CuZnSOD, Ad.MnSOD and the control viral vectors; M. Du and A. Sandoval for technical assistance in the isolation and preparation of primary cells from health donors and from leukaemia patients; and J. Richard for editorial assistance. This work was supported in part by NIH/NCI grants to P.H. and W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Feng, L., Oldham, E. et al. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390–395 (2000). https://doi.org/10.1038/35030140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing