Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IRS-2 pathways integrate female reproduction and energy homeostasis

Abstract

Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals. Likewise, obesity is associated with infertile conditions such as polycystic ovary syndrome1,2. The reproductive status of lower organisms such as Caenorhabditis elegans is also modulated by availability of nutrients3,4. Thus, fertility requires the integration of reproductive and metabolic signals. Here we show that deletion of insulin receptor substrate-2 (IRS-2), a component of the insulin/insulin-like growth factor-1 signalling cascade, causes female infertility. Mice lacking IRS-2 have small, anovulatory ovaries with reduced numbers of follicles. Plasma concentrations of luteinizing hormone, prolactin and sex steroids are low in these animals. Pituitaries are decreased in size and contain reduced numbers of gonadotrophs. Females lacking IRS-2 have increased food intake and obesity, despite elevated levels of leptin. Our findings indicate that insulin, together with leptin and other neuropeptides, may modulate hypothalamic control of appetite and reproductive endocrinology. Coupled with findings on the role of insulin-signalling pathways in the regulation of fertility, metabolism and longevity in C. elegans and Drosophila3,4,5, we have identified an evolutionarily conserved mechanism in mammals that regulates both reproduction and energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reproductive and metabolic characteristics of IRS-2-deficient animals.
Figure 2: Ovarian phenotype of the IRS-2 knockout.
Figure 3: Reproductive hormone levels and response of ovariectomized mice to exogenous sex steroid stimulation.
Figure 4: Pituitary phenotype of IRS-2-/- females.
Figure 5: Analysis of feeding and energy homeostasis.

Similar content being viewed by others

References

  1. Franks, S., Gilling-Smith, C., Watson, H. & Willis, D. Insulin action in the normal and polycystic ovary. Endocrin. Metab. Clin. North Am. 28, 361–378 (1999).

    Article  CAS  Google Scholar 

  2. Legro, R. S. et al. Phenotype and genotype in polycystic ovary syndrome. Recent Prog. Horm. Res. 53, 217–256 (1998).

    CAS  PubMed  Google Scholar 

  3. Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703– 717 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Bohni, R. et al. Autonomous control of cell and organ size by CHICO, a drosophila homolog of vertegrate IRS1-4. Cell 97, 865 –875 (1999).

    Article  CAS  Google Scholar 

  6. Lavan, B. E., Lane, W. S. & Lienhard, G. E. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272, 11439–11443 (1997).

    Article  CAS  Google Scholar 

  7. Lavan, B. E. et al. A novel 160 kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem. 272, 21403– 21407 (1997).

    Article  CAS  Google Scholar 

  8. Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Withers, D. J. et al. Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nature Genet. 23 , 32–40 (1999).

    Article  CAS  Google Scholar 

  10. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Morita, Y. et al. Requirement for phosphatidylinositol-3-kinase in cytokine-mediated germ CEll survival during fetal oogenesis in the mouse. Endocrinology 140, 941–949 ( 1999).

    Article  CAS  Google Scholar 

  12. Vassen, L., Wegrzyn, W. & Klein-Hitpass, L. Human insulin receptor substrate-2 (IRS-2) is a primary progesterone response gene. Mol. Endocrinol. 13, 485–494 (1999).

    Article  CAS  Google Scholar 

  13. Richards, R. G., DiAugustine, R. P., Petrusz, P., Clark, G. C. & Sebastian, J. Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in the uterus. Proc. Natl Acad. Sci. USA 93, 12002–12007 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Schwartz, M. W., Baskin, D. G., Kaiyala, K. J. & Woods, S. C. Model of the regulation of energy balance and adiposity by the central nervous system. Am. J. Clin. Nutr. 69, 584– 596 (1999).

    Article  CAS  Google Scholar 

  15. Unger, J. W. & Betz, M. Insulin receptors and signal transduction proteins in the hypothalamo–hypophyseal system: a review on morphological findings and functional implications. Histol. Histopathol. 13, 1215–1224 (1998).

    CAS  PubMed  Google Scholar 

  16. Unger, J. W. & Lange, W. Insulin receptors in the pituitary gland: morphological evidence for influence on opioid peptide-synthesizing cells. Cell Tissue Res. 288, 471– 483 (1997).

    Article  CAS  Google Scholar 

  17. Woods, S. C., Stein, L. J., McKay, L. D. & Porte, D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503– 505 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Foster, L. A., Ames, N. K. & Emery, R. S. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-1. Physiol. Behav. 50, 745–749 (1991).

    Article  CAS  Google Scholar 

  19. Flier, J. S. What's in a name? In search of leptin's physiological role. J. Clin. Endocrin. Metab. 83, 1407–1413 (1998).

    CAS  Google Scholar 

  20. Schwartz, M. & Seeley, R. Neuroendocrine responses to starvation and weight loss. New Engl. J. Med. 336, 1802–18011 (1997).

    Article  CAS  Google Scholar 

  21. Ahima, R., Prabakaran, D., Mantzoros, C. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250– 252 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet. 12 , 318–320 (1996).

    Article  CAS  Google Scholar 

  23. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutatioan in the leptin receptor gene in db/db mice. Cell 84, 491–495 ( 1996).

    Article  CAS  Google Scholar 

  24. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genet. 14, 95–97 ( 1996).

    Article  CAS  Google Scholar 

  26. McCowen, K. C., Chow, J. C. & Smith, R. J. Leptin signaling in the hypothalamus of normal rats in vivo. Endocrinology 139, 4442– 4447 (1998).

    Article  CAS  Google Scholar 

  27. Szanto, I. & Kahn, C. R. Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc. Natl Acad. Sci 97, 2355–2360 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Berti, L., Kellerer, M., Capp, E. & Haring, H. U. Leptin stimluates glucose transport and glycogen synthesis in C2C23 myotubes: evidence for a PI 3-kinase mediated effect. Diabetologia 40, 606–609 (1997).

    Article  CAS  Google Scholar 

  29. Cohen, B., Novick, D. & Rubinstein, M. Modulation of insulin activities by leptin. Science 274, 1185–1188 ( 1996).

    Article  ADS  CAS  Google Scholar 

  30. Fredrich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med. 1, 1311–1314 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Cahill for preparation of pituitary sections; A. Parlow for antibodies to pituitary hormones; A. Dunaif for testosterone measurements; and D. Hess for helpful discussions of murine sex hormones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris F. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burks, D., de Mora, J., Schubert, M. et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382 (2000). https://doi.org/10.1038/35030105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030105

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing