Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Body image as a visuomotor transformation device revealed in adaptation to reversed vision

Abstract

People adapt with remarkable flexibility to reversal of the visual field caused by prism spectacles1,2. With sufficient time, this adaptation restores visually guided behaviour and perceptual harmony between the visible and tactile worlds1,2,3. Although it has been suggested that seeing one's own body is crucial for adaptation1,2, the underlying mechanisms are unclear. Here we show that a new representation of visuomotor mapping with respect to the hands emerges in a month during adaptation to reversed vision. The subjects become bi-perceptual3,4,5, or able to use both new and old representations. In a visual task designed to assess the new hand representation, subjects identified visually presented hands as left or right by matching the picture to the representation of their own hands. Functional magnetic resonance imaging showed brain activity in the left posterior frontal cortex (Broca's area) that was unique to the new hand representations of both hands, together with activation in the intraparietal sulcus and prefrontal cortex. The emergence of the new hand representation coincided with the adaptation of perceived location of visible objects in space. These results suggest that the hand representation operates as a visuomotor transformation device that provides an arm-centred frame of reference6 for space perception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Performance in the reaching and visual localization task.
Figure 2: The hand identification task.
Figure 3: Schematic description of visuomotor experience for a subject's own right hand, before and while wearing the prisms.
Figure 4: Functional MRI scans during mental rotation of a subject's own hand image.

Similar content being viewed by others

References

  1. Kohler, I. The formation and transformation of the perceptual world. Psychol. Issues 3 (monogr. 12) 1–173 (1964).

    Google Scholar 

  2. Stratton, G. M. Vision without inversion of the retinal image. Psychol. Rev. 4, 341–360; 463–481 ( 1897).

    Article  Google Scholar 

  3. Sugita, Y. Global plasticity in adult visual cortex following reversal of visual input. Nature 380, 523–526 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Miyauchi, S. et al. Adaptation to reversing prisms activates the ipsilateral visual cortex in humans: an fMRI study. Invest. Ophthalmol. Vis. Sci. 40, S820 (1999).

    Google Scholar 

  5. Held, R. Shifts in binaural localization after prolonged exposure to atypical combination of stimuli. Am. J. Psychol. 68, 526– 548 (1955).

    Article  CAS  Google Scholar 

  6. Graziano, M. S. A., Yap, G. S. & Gross, C. G. Coding of visual space by premotor neurons. Science 266, 1054–1057 ( 1994).

    Article  ADS  CAS  Google Scholar 

  7. Sekiyama, K. Kinesthetic aspects of mental representations in the identification of left and right hands. Percept. Psychophys. 32, 89–95 (1982).

    Article  CAS  Google Scholar 

  8. Sekiyama, K. Mental and physical movements of hands: Kinesthetic information preserved in representational systems. Jpn. Psychol. Res. 25, 95–102 (1983).

    Article  Google Scholar 

  9. Bonda, E., Petrides, M., Frey, S. & Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl Acad. Sci. USA 92, 11180–11184 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Parsons, L. M. et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375, 54– 58 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Roland, P. E. Brain Activation (Wiley-Liss, New York, 1993).

    Google Scholar 

  12. Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L. & Alpert, N. M. Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology 35, 151–161 (1998).

    Article  CAS  Google Scholar 

  13. Alivisatos, B. & Petrides, M. Functional activation of the human brain during mental rotation. Neuropsychologia 35, 111–1118 (1997).

    Article  CAS  Google Scholar 

  14. Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995).

    Article  CAS  Google Scholar 

  15. Selemon, L. D. & Goldman-Rakic, P. S. Common cortical subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8, 4049–4068 (1988).

    Article  CAS  Google Scholar 

  16. Murray, E. A., Bussey, T. J. & Wise, S. P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain Res. 1, 114 –129 (2000).

    Article  Google Scholar 

  17. White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).

    Article  CAS  Google Scholar 

  18. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608– 611 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Perenin, M. T. & Vighetto, A. Optic ataxia: A specific disruption in visuomotor mechanisms. Brain 111, 643–674 (1988).

    Article  Google Scholar 

  21. Clower, D. M. et al. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383, 618 –621 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Rushworth, M. F. S., Nixon, P. D. & Passingham, R. E. Parietal cortex and movement: I. Movement selection and reaching. Exp. Brain Res. 117, 292– 310 (1997).

    Article  CAS  Google Scholar 

  24. Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp. Brain Res. 83, 29–36 ( 1990).

    Article  CAS  Google Scholar 

  25. Iriki, A., Tanaka, M. & Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurons. NeuroReport 7, 2325 –2330 (1996).

    Article  CAS  Google Scholar 

  26. Krams, M., Rushworth, M. F. S., Deiber, M. P., Frackowiak, R. S. J. & Passingham, R. E. The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398 (1998).

    Article  CAS  Google Scholar 

  27. Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by positron emission tomography: 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

    Article  CAS  Google Scholar 

  28. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141 (1996).

    Article  CAS  Google Scholar 

  29. Kurata, K. & Hoshi, E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J. Neurophysiol. 81, 1927– 1938 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kato, T. Hayakawa, T. Murata, H. Tanabe and M. Nakatsuka for technical assistance and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Sekiyama.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekiyama, K., Miyauchi, S., Imaruoka, T. et al. Body image as a visuomotor transformation device revealed in adaptation to reversed vision. Nature 407, 374–377 (2000). https://doi.org/10.1038/35030096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030096

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing