Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ordering and self-organization in nanocrystalline silicon

Abstract

The spontaneous formation of organized nanocrystals in semiconductors has been observed1,2,3,4,5 during heteroepitaxial growth and chemical synthesis. The ability to fabricate size-controlled silicon nanocrystals encapsulated by insulating SiO2 would be of significant interest to the microelectronics industry. But reproducible manufacture of such crystals is hampered by the amorphous nature of SiO2 and the differing thermal expansion coefficients of the two materials. Previous attempts6,7,8,9,10 to fabricate Si nanocrystals failed to achieve control over their shape and crystallographic orientation, the latter property being important in systems such as Si quantum dots. Here we report the self-organization of Si nanocrystals larger than 80 Å into brick-shaped crystallites oriented along the 〈111〉 crystallographic direction. The nanocrystals are formed by the solid-phase crystallization of nanometre-thick layers of amorphous Si confined between SiO2 layers. The shape and orientation of the crystallites results in relatively narrow photoluminescence, whereas isotropic particles produce qualitatively different, broad light emission. Our results should aid the development of maskless, reproducible Si nanofabrication techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron microscope micrographs showing examples of nc- Si superlattices with different thicknesses of nc-Si layers: a, 42 Å; b, 85 Å; c, 200 Å; and d, the enhanced image of a brick-shaped Si nanocrystal with 200 Å and 500 Å vertical and lateral dimensions respectively.
Figure 2: Spectra of scattered light.
Figure 3: The Raman scattering polarization diagram.
Figure 4: Photoluminescence (PL) spectra in c-Si and nc-Si superlattices with different nc-Si layer thicknesses.

Similar content being viewed by others

References

  1. Yip, S. Nanocrystals—the strongest size. Nature 391, 532– 533 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Empedocles, S. A., Neuhauser, R. & Bawendi, M. G. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Han, W. Q., Fan, S. S., Li, Q. Q. & Hu, Y. D. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287–1289 ( 1997).

    Article  CAS  Google Scholar 

  5. Budai, J. D. et al. Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. Nature 390, 384–386 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Baron, T., Martin, F., Mur, P., Wyon, C. & Dupuy, M. Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices. J. Cryst. Growth 209, 1004–1008 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Nakajima, A., Sugita, Y., Kawamura, K., Tomita, H. & Yokoyama, N. Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition. J. Appl. Phys. 80, 4006–4011 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface oxidized silicon nanocrystals. Science 262, 1242– 1244 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Littau, K. A., Szajowski, P. F., Muller, A. J., Kortan, A. R. & Brus, L. E. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97, 1224–1230 ( 1993).

    Article  CAS  Google Scholar 

  10. Shimizu-Iwayama, T., Hole, D. E. & Boyd, I. W. Mechanism of photoluminescence of Si nanocrystals in SiO2 fabricated by ion implantation: the role of interactions of nanocrystals and oxygen. J. Phys. Condens. Matt. 11 , 6595–6604 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Tsybeskov, L. et al. Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl. Phys. Lett. 72, 43–45 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Levi, D., Zhang, S.-L., Klein, M. V., Klem, J. & Morkoc, H. Raman study of the effects of annealing on folded LA and confined LO phonons in GaAs-AlAs superlattices. Phys. Rev. B 36, 8032–8037 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Lockwood, D. J., Dharma-wardana, M. W. C., Baribeau, J.-M. & Houghton, D. C. Folded acoustic phonons in Si/GexSi1-x strained superlattices. Phys. Rev. B 35, 2243– 2251 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Ivchenko, E. I. & Pikus, G. Superlattices and Other Heterostructures: Symmetry and Optical Phenomenon Vol. 110 (Springer Ser. Solid-State Science, Springer, Berlin, 1995).

    Book  Google Scholar 

  15. Ghanbari, R. A., White, J. D., Fasol, G., Gibbings, C. J. & Tuppen, C. G. Phonon frequency for Si-Ge strained-layer superlattices calculated in a 3-dimensional model. Phys. Rev. B 42 , 7033–7041 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Mizoguchi, K. & Nakashima, S. J. Determination of crystallographic orientations in silicon films by Raman-microprobe polarization measurements. J. Appl. Phys. 65, 2583– 2590 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Haji, L., Joubert, P., Stoemenos, J. & Economou, N. A. Mode of growth and microstructure of polycrystalline silicon obtained by solid phase crystallization of an amorphous silicon film. J. Appl. Phys. 75, 3944–3952 ( 1994).

    Article  ADS  CAS  Google Scholar 

  18. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. & Brumhead, D. Spectroscopic identification of the luminescence mechanism of highly porous silicon. J. Lumin. 57, 257–269 ( 1993).

    Article  CAS  Google Scholar 

  19. Cullis, A. G., Canham, L.T. & Calcott, P. D. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909 –965 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Cullis, A. G. & Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 ( 1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by US Army Research Office, National Science Foundation and Motorola. L.T. acknowledges support from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tsybeskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grom, G., Lockwood, D., McCaffrey, J. et al. Ordering and self-organization in nanocrystalline silicon. Nature 407, 358–361 (2000). https://doi.org/10.1038/35030062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030062

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing