Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Onset of antiferromagnetism in heavy-fermion metals


There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures1. The second description, based on the physics of electron fluids or ‘Fermi liquids’, states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave2,3. It is at present unknown which view is appropriate at a ‘quantum critical point’, where the antiferromagnetic transition temperature vanishes4,5,6,7. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu6-xAux, which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (xc = 0.1 ), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phase diagram and models for quantum criticality in CeCu6- xAux.
Figure 2: Magnetic neutron scattering data.
Figure 3: Temperature dependence of the inverse static susceptibility.
Figure 4: Temperature is the only scale for energy and field-dependent response at quantum criticality.


  1. Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–12 ( 1959).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Stoner, E. C. Proc. R. Soc. Lond. A 154, 656–678 (1936).

    ADS  CAS  Article  Google Scholar 

  3. Overhauser, A. W. New mechanism of antiferromagnetism. Phys. Rev. Lett. 3, 414–415 (1959).

    ADS  CAS  Article  Google Scholar 

  4. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    ADS  CAS  Article  Google Scholar 

  5. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant ferion systems. Phys. Rev. B 48, 7183– 7196 (1993).

    ADS  CAS  Article  Google Scholar 

  6. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Low temperature behavior of a 2D quantum antiferromagnet. Phys. Rev. Lett. 60, 1057– 1060 (1988).

    ADS  CAS  Article  Google Scholar 

  7. Sachdev, S. & Ye, J. Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411–2414 (1992).

    ADS  CAS  Article  Google Scholar 

  8. Stewart, G. R., Fisk, Z. & Wire, M. S. New Ce heavy-fermion system: CeCu6. Phys. Rev. B 30, 482–484 (1984).

    ADS  CAS  Article  Google Scholar 

  9. Onuki, Y., Shimizu, Y. & Komatsubara, T. Magnetic property of a new Kondo lattice intermetallic compound: CeCu6. J. Phys. Soc. Jpn 53, 1210–1213 (1984).

    ADS  CAS  Article  Google Scholar 

  10. Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B 91, 231–234 (1977).

    Article  Google Scholar 

  11. Aeppli, G. & Broholm, C. in Handbook on the Physics and Chemistry of Rare Earths Vol. 19 (ed. Gschneidner, K. A. Jr et al.) 123–175 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  12. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    ADS  CAS  Article  Google Scholar 

  13. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 ( 1989).

    ADS  CAS  Article  Google Scholar 

  14. Löhneysen, H.v. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262– 3265 (1994).

    ADS  Article  Google Scholar 

  15. Stockert, O., Löhneysen, H.v., Rosch, A., Pyka, N. & Loewenhaupt, M. Two-dimensional fluctuations at the quantum-critical point of CeCu6-xAux. Phys. Rev. Lett. 80, 5627– 5630 (1998).

    ADS  CAS  Article  Google Scholar 

  16. Löhneysen, H.v. et al. Magnetic order and transport in the heavy-fermion system CeCu 6-xAux. Eur. Phys. J. B 5, 447–456 (1998).

    ADS  Article  Google Scholar 

  17. Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623– 5626 (1998).

    ADS  Article  Google Scholar 

  18. Rosch, A., Schröder, A., Stockert, O. & Löhneysen, H.v. Mechanism for the non-Fermi-liquid behavior in CeCu6-xAu x. Phys. Rev. Lett. 79, 159– 162 (1997).

    ADS  CAS  Article  Google Scholar 

  19. Ruck, M. et al. Structure and electrical resistivity of the heavy fermion compound CeCu5Au. Acta Crystallogr. B 49, 936–941 (1993).

    Article  Google Scholar 

  20. Schröder, A., Lynn, J. W., Erwin, R. W., Loewenhaupt, M. & Löhneysen, H.v. Magnetic structure of the heavy fermion alloy CeCu5.5Au0.5. Physica B 199–200, 47–48 ( 1994).

    ADS  Article  Google Scholar 

  21. Stockert, O. et al. Incommensurate antiferromagnetism and magnetic correlations in CeCu6-xAux. Physica B 230–232, 247–249 ( 1997).

    ADS  Article  Google Scholar 

  22. Si, Q., Smith, J. L. & Ingersent, K. Quantum critical behavior in Kondo systems. Int. J. Mod. Phys. 13, 2331–2342 (1999).

    ADS  CAS  Article  Google Scholar 

  23. Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280 –4283 (1999).

    ADS  CAS  Article  Google Scholar 

  24. Doniach, S. in Proc 5th Int. Conf. on Valence Fluctuations 179– 185 (Plenum, New York, 1987).

    Google Scholar 

  25. Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995).

    ADS  CAS  Article  Google Scholar 

  26. Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu 5-xPdx (x = 1,1.5). Phys. Rev. Lett. 75, 725–728 ( 1995).

    ADS  CAS  Article  Google Scholar 

  27. Schröder, A., Schlager, H. G. & Löhneysen, H.v. Magnetization of CeCu6 at low temperatures. J. Magn. Magn. Mater. 108, 47–49 (1992).

    ADS  Article  Google Scholar 

  28. Carlile, C. J. & Adams, M. A. The design of the IRIS inelastic neutron spectrometer and improvements to its analysers. Physica B 182, 431–440 (1992).

    ADS  CAS  Article  Google Scholar 

  29. Sachdev, S. Quantum phase transitions and conserved charges. Z. Phys. B 94, 469–479 (1994).

    ADS  Article  Google Scholar 

  30. Castro Neto, A. H., Castilla, G. & Jones, B. A. Non-Fermi liquid behavior and Griffiths phase in f-electron compounds. Phys. Rev. Lett. 81, 3531–3534 (1996).

    ADS  Article  Google Scholar 

Download references


A.S., O.S. and H.v.L. were supported by the Deutsche Forschungsgemeinschaft; R.C. was supported by the Oak Ridge National Laboratory Postdoctoral Research Associates program, administered jointly by the Oak Ridge National Laboratory and the Oak Ridge Institute for Science and Education; P.C. and R.R. were supported by the National Science Foundation. R.R. acknowledges partial support from the MacArthur Chair endowed by the John D. & Catherine T. MacArthur Foundation at the University of Illinois.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Coleman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schröder, A., Aeppli, G., Coldea, R. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing