Letter | Published:

Onset of antiferromagnetism in heavy-fermion metals

Nature volume 407, pages 351355 (21 September 2000) | Download Citation

Subjects

Abstract

There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures1. The second description, based on the physics of electron fluids or ‘Fermi liquids’, states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave2,3. It is at present unknown which view is appropriate at a ‘quantum critical point’, where the antiferromagnetic transition temperature vanishes4,5,6,7. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu6-xAux, which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (xc = 0.1 ), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–12 ( 1959).

  2. 2.

    Proc. R. Soc. Lond. A 154, 656–678 (1936).

  3. 3.

    New mechanism of antiferromagnetism. Phys. Rev. Lett. 3, 414–415 (1959).

  4. 4.

    Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

  5. 5.

    Effect of a nonzero temperature on quantum critical points in itinerant ferion systems. Phys. Rev. B 48, 7183– 7196 (1993).

  6. 6.

    , & Low temperature behavior of a 2D quantum antiferromagnet. Phys. Rev. Lett. 60, 1057– 1060 (1988).

  7. 7.

    & Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411–2414 (1992).

  8. 8.

    , & New Ce heavy-fermion system: CeCu6. Phys. Rev. B 30, 482–484 (1984).

  9. 9.

    , & Magnetic property of a new Kondo lattice intermetallic compound: CeCu6. J. Phys. Soc. Jpn 53, 1210–1213 (1984).

  10. 10.

    The Kondo lattice and weak antiferromagnetism. Physica B 91, 231–234 (1977).

  11. 11.

    & in Handbook on the Physics and Chemistry of Rare Earths Vol. 19 (ed. Gschneidner, K. A. Jr et al.) 123–175 (Elsevier, Amsterdam, 1994).

  12. 12.

    et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

  13. 13.

    , , , & Phenomenology of the normal state of Cu-O high temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 ( 1989).

  14. 14.

    et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262– 3265 (1994).

  15. 15.

    , , , & Two-dimensional fluctuations at the quantum-critical point of CeCu6-xAux. Phys. Rev. Lett. 80, 5627– 5630 (1998).

  16. 16.

    et al. Magnetic order and transport in the heavy-fermion system CeCu 6-xAux. Eur. Phys. J. B 5, 447–456 (1998).

  17. 17.

    , , , & Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623– 5626 (1998).

  18. 18.

    , , & Mechanism for the non-Fermi-liquid behavior in CeCu6-xAu x. Phys. Rev. Lett. 79, 159– 162 (1997).

  19. 19.

    et al. Structure and electrical resistivity of the heavy fermion compound CeCu5Au. Acta Crystallogr. B 49, 936–941 (1993).

  20. 20.

    , , , & Magnetic structure of the heavy fermion alloy CeCu5.5Au0.5. Physica B 199–200, 47–48 ( 1994).

  21. 21.

    et al. Incommensurate antiferromagnetism and magnetic correlations in CeCu6-xAux. Physica B 230–232, 247–249 ( 1997).

  22. 22.

    , & Quantum critical behavior in Kondo systems. Int. J. Mod. Phys. 13, 2331–2342 (1999).

  23. 23.

    Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280 –4283 (1999).

  24. 24.

    in Proc 5th Int. Conf. on Valence Fluctuations 179– 185 (Plenum, New York, 1987).

  25. 25.

    & Anomalous properties around magnetic instability in heavy electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995).

  26. 26.

    et al. Non-Fermi-liquid scaling of the magnetic response in UCu 5-xPdx (x = 1,1.5). Phys. Rev. Lett. 75, 725–728 ( 1995).

  27. 27.

    , & Magnetization of CeCu6 at low temperatures. J. Magn. Magn. Mater. 108, 47–49 (1992).

  28. 28.

    & The design of the IRIS inelastic neutron spectrometer and improvements to its analysers. Physica B 182, 431–440 (1992).

  29. 29.

    Quantum phase transitions and conserved charges. Z. Phys. B 94, 469–479 (1994).

  30. 30.

    , & Non-Fermi liquid behavior and Griffiths phase in f-electron compounds. Phys. Rev. Lett. 81, 3531–3534 (1996).

Download references

Acknowledgements

A.S., O.S. and H.v.L. were supported by the Deutsche Forschungsgemeinschaft; R.C. was supported by the Oak Ridge National Laboratory Postdoctoral Research Associates program, administered jointly by the Oak Ridge National Laboratory and the Oak Ridge Institute for Science and Education; P.C. and R.R. were supported by the National Science Foundation. R.R. acknowledges partial support from the MacArthur Chair endowed by the John D. & Catherine T. MacArthur Foundation at the University of Illinois.

Author information

Author notes

    • O. Stockert

    Present address: H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.

Affiliations

  1. *Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe, Germany

    • A. Schröder
    • , O. Stockert
    •  & H.v. Löhneysen
  2. †NEC, 4 Independence Way, Princeton, New Jersey 08540, USA

    • G. Aeppli
  3. ‡Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

    • R. Coldea
  4. §ISIS Facility, CCLRC, Rutherford-Appleton Laboratory, Didcot OX11 0QX, UK

    • R. Coldea
    •  & M. Adams
  5. ¶Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

    • E. Bucher
  6. #Bell Laboratories, Lucent Technologies , Murray Hill, New Jersey 07974, USA

    • E. Bucher
  7. Department of Physics, University of Illinois, Urbana, Illinois 61801, USA

    • R. Ramazashvili
  8. **Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

    • P. Coleman

Authors

  1. Search for A. Schröder in:

  2. Search for G. Aeppli in:

  3. Search for R. Coldea in:

  4. Search for M. Adams in:

  5. Search for O. Stockert in:

  6. Search for H.v. Löhneysen in:

  7. Search for E. Bucher in:

  8. Search for R. Ramazashvili in:

  9. Search for P. Coleman in:

Corresponding author

Correspondence to P. Coleman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35030039

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.