Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional architecture of an intracellular membrane t-SNARE

Abstract

Lipid bilayer fusion is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) located on the vesicle membrane (v-SNAREs) and the target membrane (t-SNAREs)1,2. The assembled v-SNARE/t-SNARE complex consists of a bundle of four helices, of which one is supplied by the v-SNARE and the other three by the t-SNARE3. For t-SNAREs on the plasma membrane, the protein syntaxin4 supplies one helix and a SNAP-25 protein5 contributes the other two. Although there are numerous homologues of syntaxin on intracellular membranes6, there are only two SNAP-25-related proteins in yeast, Sec9 and Spo20, both of which are localized to the plasma membrane and function in secretion7 and sporulation8, respectively. What replaces SNAP-25 in t-SNAREs of intracellular membranes? Here we show that an intracellular t-SNARE is built from a ‘heavy chain’ homologous to syntaxin and two separate non-syntaxin ‘light chains’. SNAP-25 may thus be the exception rather than the rule, having been derived from genes that encoded separate light chains that fused during evolution to produce a single gene encoding one protein with two helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The model for the architecture of intracellular t-SNAREs.
Figure 2: Vacuolar v-SNARE/t-SNARE complex.
Figure 3: Fusion between vesicles containing vacuolar v- and t-SNAREs.

Similar content being viewed by others

References

  1. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  ADS  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  Google Scholar 

  3. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  6. Pelham, H. R. SNAREs and the secretory pathway-lessons from yeast. Exp. Cell Res. 247, 1–8 ( 1999).

    Article  CAS  Google Scholar 

  7. Rossi, G., Salminen, A., Rice, L. M., Brunger, A. T. & Brennwald, P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J. Biol. Chem. 272, 16610–16617 ( 1997).

    Article  CAS  Google Scholar 

  8. Neiman, A. M. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140, 29–37 (1998).

    Article  CAS  Google Scholar 

  9. Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199– 202 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Ungermann, C. & Wickner, W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 17, 3269–3276 ( 1998).

    Article  CAS  Google Scholar 

  11. Ungermann, C. et al. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J. Cell Biol. 145, 1435– 1442 (1999).

    Article  CAS  Google Scholar 

  12. Sato, T. K., Darsow, T. & Emr, S. D. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol. Cell. Biol. 18, 5308–5319 (1998).

    Article  CAS  Google Scholar 

  13. Nichols, B. J. & Pelham, H. R. SNAREs and membrane fusion in the Golgi apparatus. Biochim. Biophys. Acta 1404, 9–31 (1998).

    Article  CAS  Google Scholar 

  14. Fischer von Mollard, G., Nothwehr, S. F. & Stevens, T. H. The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J. Cell Biol. 137, 1511–1524 (1997).

    Article  Google Scholar 

  15. Struck, D. K., Hoekstra, D. & Pagano, R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 4093– 4099 (1981).

    Article  CAS  Google Scholar 

  16. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA 96, 12565 –12570 (1999).

    Article  ADS  CAS  Google Scholar 

  17. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153– 159 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 ( 1998).

    Article  ADS  CAS  Google Scholar 

  19. Weimbs, T., Mostov, K., Low, S. H. & Hofmann, K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260– 262 (1998).

    Article  CAS  Google Scholar 

  20. Fischer von Mollard, G. & Stevens, T. H. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol. Biol. Cell 10, 1719 –1732 (1999).

    Article  CAS  Google Scholar 

  21. Hay, J. C., Chao, D. S., Kuo, C. S. & Scheller, R. H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149– 158 (1997).

    Article  CAS  Google Scholar 

  22. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 ( 1998).

    Article  ADS  CAS  Google Scholar 

  23. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and alpha-SNAP. J. Cell Biol. (in the press).

  24. Peters, C. et al. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285, 1084 –1087 (1999).

    Article  CAS  Google Scholar 

  25. Weisman, L. S., Bacallao, R. & Wickner, W. Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J. Cell Biol. 105, 1539–1547 (1987).

    Article  CAS  Google Scholar 

  26. Foster, L. J. et al. Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 37, 11089–11096 ( 1998).

    Article  CAS  Google Scholar 

  27. Risinger, C. & Bennett, M. K. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP–25) isoforms. J. Neurochem. 72, 614– 624 (1999).

    Article  CAS  Google Scholar 

  28. McNew, J. A. et al. Ykt6p, a prenylated SNARE essential for endoplasmic reticulum–Golgi transport. J. Biol. Chem. 272, 17776 –17783 (1997).

    Article  CAS  Google Scholar 

  29. Schneiter, R. et al. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146, 741–754 (1999).

    Article  CAS  Google Scholar 

  30. Zinser, E. & Daum, G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11, 493–536 ( 1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank B. Brügger for preparation of the vacuolar lipid mixture and T. Wolfe for help with the manuscript. This work was supported by an NIH grant (to J.E.R.) and postdoctoral fellowships of the Japan Society for the Promotion of Science (to R.F.), the Human Frontiers Science Program Organization (to W.N.), the Deutsche Forschungsgemeinschaft (to T.E.), the Medical Research Council of Canada (to F.P.), the National Institutes of Health (to J.A.M.), the Swiss National Science Foundation (to T.W.) and the European Molecular Biology Organization (to T.W.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, R., McNew, J., Weber, T. et al. Functional architecture of an intracellular membrane t-SNARE. Nature 407, 198–202 (2000). https://doi.org/10.1038/35025084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025084

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing