Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Compartmental specificity of cellular membrane fusion encoded in SNARE proteins


Membrane-enveloped vesicles travel among the compartments of the cytoplasm of eukaryotic cells, delivering their specific cargo to programmed locations by membrane fusion. The pairing of vesicle v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) with target membrane t-SNAREs has a central role in intracellular membrane fusion. We have tested all of the potential v-SNAREs encoded in the yeast genome for their capacity to trigger fusion by partnering with t-SNAREs that mark the Golgi, the vacuole and the plasma membrane. Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of liposomes.
Figure 2: The yeast exocytic SNAREs can fuse vesicles.
Figure 3: Compartmental specificity is determined by SNARE interactions.
Figure 4: Specificity of the three functional t-SNARE complexes versus all other potential v-SNAREs.
Figure 5: Ykt6 anchored with a short-chain isoprenoid does not fuse.


  1. 1

    Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    CAS  Article  Google Scholar 

  3. 3

    Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Pelham, H. R. SNAREs and the secretory pathway-lessons from yeast. Exp. Cell Res. 247, 1–8 ( 1999).

    CAS  Article  Google Scholar 

  5. 5

    Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA 96, 12565 –12570 (1999).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Nickel, W. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl Acad. Sci. USA 96, 12571–12576 (1999).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y. C. & Scheller, R. H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198 (2000).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Fukuda, R. et al. Functional architecture of an intracellular t-SNARE. Nature 407, 198–202 ( 2000).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2. 4 A resolution. Nature 395, 347–353 ( 1998).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523– 535 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Fasshauer, D., Otto, H., Eliason, W. K., Jahn, R. & Brunger, A. T. Structural changes are associated with soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036– 28041 (1997).

    CAS  Article  Google Scholar 

  13. 13

    McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–118 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Nicholson, K. L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793–802 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Hua, S. Y. & Charlton, M. P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nature Neurosci. 2, 1078–1083 ( 1999).

    CAS  Article  Google Scholar 

  16. 16

    Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713– 722 (1999).

    CAS  Article  Google Scholar 

  17. 17

    McNew, J. A., Weber, T., Engelman, D. M., Söllner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Weimbs, T., Mostov, K., Low, S. H. & Hofmann, K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell. Biol. 8, 260– 262 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Aalto, M. K., Ronne, H. & Keranen, S. Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J. 12, 4095–4104 ( 1993).

    CAS  Article  Google Scholar 

  21. 21

    Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Gerst, J. E., Rodgers, L., Riggs, M. & Wigler, M. SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes. Proc. Natl Acad. Sci. USA 89, 4338–4342 ( 1992).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Katz, L., Hanson, P. I., Heuser, J. E. & Brennwald, P. Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 17, 6200–6209 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Gerst, J. E. Conserved alpha-helical segments on yeast homologs of the synaptobrevin/VAMP family of v-SNAREs mediate exocytic function. J. Biol. Chem. 272, 16591–16598 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Neiman, A. M. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140, 29–37 (1998).

    CAS  Article  Google Scholar 

  26. 26

    McNew, J. A. et al. Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J. Biol. Chem. 272, 17776– 17783 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Newman, A. P., Shim, J. & Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 10, 3405– 3414 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Nichols, B. J. & Pelham, H. R. SNAREs and membrane fusion in the Golgi apparatus. Biochim. Biophys. Acta 1404, 9–31 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Banfield, D. K., Lewis, M. J. & Pelham, H. R. A SNARE-like protein required for traffic through the Golgi complex. Nature 375, 806– 809 (1995).

    ADS  CAS  Article  Google Scholar 

  30. 30

    McNew, J. A. et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 435, 89– 95 (1998).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).

    Article  Google Scholar 

  32. 32

    Lupashin, V. V., Pokrovskaya, I. D., McNew, J. A. & Waters, M. G. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol. Biol. Cell 8, 2659– 2676 (1997).

    CAS  Article  Google Scholar 

  33. 33

    von Mollard, G. F., Nothwehr, S. F. & Stevens, T. H. The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J. Cell Biol. 137, 1511–1524 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Abeliovich, H., Grote, E., Novick, P. & Ferro-Novick, S. Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures. J. Biol. Chem. 273, 11719– 11727 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Fischer von Mollard, G. & Stevens, T. H. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol. Biol. Cell 10, 1719 –1732 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Fasshauer, D., Sutton, R. B., Brunger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl Acad. Sci. USA 95, 15781–15786 (1998).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Ungermann, C., Nichols, B. J., Pelham, H. R. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  40. 40

    Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199– 202 (1997).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and αSNAP. J. Cell Biol. 149, 1063– 1072 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Rayner, J. C. & Pelham, H. R. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J. 16, 1832–1841 ( 1997).

    CAS  Article  Google Scholar 

  43. 43

    Waters, M. G. & Pfeffer, S. R. Membrane tethering in intracellular transport. Curr. Opin. Cell Biol. 11, 453 –459 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Gonzalez, L. Jr. & Scheller, R. H. Regulation of membrane trafficking: structural insights from a Rab/effector complex. Cell 96, 755–758 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Mellman, I. & Warren, G. The road taken: past and future foundations of membrane traffic. Cell 100, 99– 112 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Stinchcombe, J. C. & Griffiths, G. M. Regulated secretion from hemopoietic cells. J. Cell Biol. 147 , 1–6 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 ( 1999).

    CAS  Article  Google Scholar 

  48. 48

    Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Schaffner, W. & Weissmann, C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514 ( 1973).

    CAS  Article  Google Scholar 

Download references


We wish to thank Dr Paul A. Marks for two decades of exemplary leadership of Memorial Sloan-Kettering Cancer Center and for creating the environment that made possible the discovery of SNARE proteins and their role in cell biology. We also thank L. Katz and P. Brennwald for plasmids, B. Brügger for help in the construction of the TLG1 clone, and T. Melia for cryo-electron microscopy of liposomes. Research was supported by an NIH grant (to J.E.R.) and postdoctoral fellowships of the Medical Research Council of Canada (F.P.), the NIH (J.M.), and the Japanese Society for the Promotion of Science (R.F.).

Author information



Additional information

Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 251, New York, New York 10021, USA

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McNew, J., Parlati, F., Fukuda, R. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing