Domain-specific recruitment of amide amino acids for protein synthesis


The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNAAsn or Glu-tRNAGln, and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases1,2. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation3, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transfer RNA specificity of M. thermoautotrophicum amidotransferases.
Figure 2: Conserved positions in the amino-acid alignments of amidotransferase components.
Figure 3: Effect of different amide donors (2 mM) on amidation activity.
Figure 4: Transfer RNA specificity of E. coli GlnRS.


  1. 1

    Wilcox, M. & Nirenberg, M. Transfer RNA as a cofactor coupling synthesis with that of protein. Proc. Natl Acad. Sci. USA 61, 229–236 (1968).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Curnow, A. W., Ibba, M. & Söll, D. tRNA-dependent asparagine formation. Nature 382, 589–590 ( 1996).

    CAS  Article  Google Scholar 

  3. 3

    Gagnon, Y., Lacoste, L., Champagne, N. & Lapointe, J. Widespread use of the Glu-tRNAGln transamidation pathway among bacteria. J. Biol. Chem. 271, 14856– 14863 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Söll, D. & Schimmel, P. R. in The Enzymes Vol. 10 (ed. Boyer, P.) 489–538 (Academic, New York, 1974).

    Google Scholar 

  5. 5

    Bayley, S. T. & Griffiths, E. Codon assignments and fidelity of translation in a cell-free protein-synthesizing system from an extremely halophilic bacterium. Can. J. Biochem. 46, 937–944 (1967).

    Article  Google Scholar 

  6. 6

    Curnow, A. W. et al. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819– 11826 (1997).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ibba, M. et al. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278, 1119–1122 (1997).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Woese, C. R., Olsen, G., Ibba, M. & Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202–236 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Spring, K. J., Jerlström, P. G., Burns, D. M. & Beacham, I. R. L-asparaginase genes in Escherichia coli: isolation of mutants and characterization of the ansA gene and its protein product. J. Bacteriol. 166, 135–142 (1986).

    CAS  Article  Google Scholar 

  10. 10

    Curnow, A. W., Tumbula, D. L., Pelaschier, J. T., Min, B. & Söll, D. Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl Acad. Sci. USA 95, 12838–12843 (1998).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Wolf, Y. I., Avarind, L., Grishin, N. V. & Koonin, E. V. Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689– 710 (1999).

    CAS  Google Scholar 

  12. 12

    Becker, H. D. & Kern, D. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc. Natl Acad. Sci. USA 95, 12832– 12837 (1998).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Schön, A., Kannangara, C. G., Gough, S. & Söll, D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331, 187–190 ( 1988).

    ADS  Article  Google Scholar 

  14. 14

    Brown, J. R. & Doolittle, W. F. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49, 485– 495 (1999).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Handy, J. & Doolittle, R. F. An attempt to pinpoint the phylogenetic introduction of glutaminyl-tRNA synthetase among bacteria. J. Mol. Evol. 49, 709–715 (1999).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Siatecka, M., Rozek, M., Barciszewski, J. & Mirande, M. Modular evolution of the Glx-tRNA synthetase family: rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur. J. Biochem. 256, 80–87 ( 1998).

    CAS  Article  Google Scholar 

  17. 17

    Kim, S.-I. et al. A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene. J. Bacteriol. 179, 5625– 5627 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Nabholz, C. E., Hauser, R. & Schneider, A. Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. Proc. Natl Acad. Sci. USA 94, 7903–7908 (1997).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Gupta, R. Halobacterium volcanii tRNAs: identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259, 9461–9471 ( 1984).

    CAS  PubMed  Google Scholar 

  20. 20

    Ibba, M., Hong, K. W., Sherman, J. M., Sever, S. & Söll, D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc. Natl Acad. Sci. USA 93, 6953–6958 ( 1996).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hayase, Y. et al. Recognition of bases in Escherichia coli tRNAGln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11, 4159–4165 ( 1992).

    CAS  Article  Google Scholar 

  22. 22

    Ludmerer, S. W. & Schimmel, P. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. J. Biol. Chem. 262, 10801– 10806 (1987).

    CAS  PubMed  Google Scholar 

  23. 23

    Fournand, D., Bigey, F. & Arnaud, A. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroaxamic acids. Appl. Environ. Microbiol. 64, 2844– 2852 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wong, J. T.-F. A co-evolution theory of the genetic code. Proc. Natl Acad. Sci. USA 72, 1909–1912 ( 1975).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Sissler, M. et al. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl Acad. Sci. USA 96, 8985–8990 (1999).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Weiner, A. M. Molecular evolution: aminoacyl-tRNA synthetases on the loose. Curr. Biol. 9, R842–R844 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Di Giulio, M. The RNA world, the genetic code and the tRNA molecule. Trends Genet. 16, 17–19 ( 2000).

    CAS  Article  Google Scholar 

  28. 28

    Ibba, M., Bono, J. L., Rosa, P. A. & Söll, D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi . Proc. Natl Acad. Sci. USA 94, 14383 –14388 (1997).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Stathopoulos, C. et al. One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287, 479–482 (2000).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Kim, R. et al. Overexpression of archaeal proteins in Escherichia coli. Biotechnol. Lett. 20, 207– 210 (1998).

    CAS  Article  Google Scholar 

Download references


We thank R. Hedderich for M. thermoautotrophicum Marburg cells, J. Reeve for M. thermoautotrophicum ΔH DNA, K. O. Stetter for Pyrococcus cells, and H. Kobayashi for E. coli GlnRS and E. coli tRNAGln2 transcript. We also thank M. Ibba for critically reading the manuscript and S. Fitz-Gibbon, T. Hartsch, A. Johann, D. Oesterhelt, A. Ruepp and S. Schuster for sharing unpublished sequence data. D.L.T. and H.D.B. are postdoctoral fellows of the National Institute of General Medical Sciences and the EMBO, respectively. This work was supported by grants from the National Institute of General Medical Sciences.

Author information



Corresponding author

Correspondence to Dieter Söll.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tumbula, D., Becker, H., Chang, W. et al. Domain-specific recruitment of amide amino acids for protein synthesis . Nature 407, 106–110 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing