Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanomechanical oscillations in a single-C60 transistor


The motion of electrons through quantum dots is strongly modified by single-electron charging and the quantization of energy levels1,2. Much effort has been directed towards extending studies of electron transport to chemical nanostructures, including molecules3,4,5,6,7,8, nanocrystals9,10,11,12,13 and nanotubes14,15,16,17. Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. We perform transport measurements that provide evidence for a coupling between the centre-of-mass motion of the C60 molecules and single-electron hopping18—a conduction mechanism that has not been observed previously in quantum dot studies. The coupling is manifest as quantized nano-mechanical oscillations of the C60 molecule against the gold surface, with a frequency of about 1.2 THz. This value is in good agreement with a simple theoretical estimate based on van der Waals and electrostatic interactions between C60 molecules and gold electrodes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Current–voltage (I–V) curves obtained from a single-C60 transistor at T = 1.5 K.
Figure 2: Two-dimensional differential conductance (∂I/∂ V) plots as a function of the bias voltage (V) and the gate voltage (Vg).
Figure 3: A differential conductance plot showing a larger bias-voltage range than those in Fig. 2.
Figure 4: Diagram of the centre-of-mass oscillation of C60.


  1. Grabert, H. & Devoret, M. H. Single Charge Tunneling (Plenum, New York, 1992).

    Book  Google Scholar 

  2. Sohn, L. L., Kouwenhoven, L. P. & Schön, G. Mesoscopic Electron Transport (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  3. Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 ( 1996).

    ADS  CAS  Article  Google Scholar 

  4. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 ( 1997).

    CAS  Article  Google Scholar 

  5. Datta, S. et al. Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997).

    ADS  CAS  Article  Google Scholar 

  6. Porath, D., Levi, Y., Tarabiah, M. & Millo, O. Tunneling spectroscopy of isolated C60 molecules in the presence of charging effects. Phys. Rev. B 56, 9829– 9833 (1997).

    ADS  CAS  Article  Google Scholar 

  7. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    ADS  CAS  Article  Google Scholar 

  8. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    ADS  CAS  Article  Google Scholar 

  9. Klein, D. L., McEuen, P. L., Bowen Katari, J. E., Roth, R. & Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68 , 2574–2576 (1996).

    ADS  CAS  Article  Google Scholar 

  10. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699– 701 (1997).

    ADS  CAS  Article  Google Scholar 

  11. Park, H., Lim, A. K. L., Park, J., Alivisatos, A. P. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75 , 301–303 (1999).

    ADS  CAS  Article  Google Scholar 

  12. Banin, U., Cao, Y., Katz, D. & Millo, O. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400, 542–544 (1999).

    ADS  CAS  Article  Google Scholar 

  13. Kim, S.-H., Medeiros-Ribeiro, G., Ohlberg, D. A. A., Williams, R. S. & Heath, J. R. Individual and collective electronic properties of Ag nanocrystals. J. Phys. Chem. B 103, 10341–10347 ( 1999).

    CAS  Article  Google Scholar 

  14. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 ( 1997).

    CAS  Article  Google Scholar 

  15. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    ADS  CAS  Article  Google Scholar 

  16. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49– 52 (1998).

    ADS  CAS  Article  Google Scholar 

  17. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 ( 1999).

    ADS  CAS  Article  Google Scholar 

  18. Gorelik, L. Y. et al. Shuttle mechanism for charge transfer in Coulomb blockade nanostructures. Phys. Rev. Lett. 80, 4526 –4529 (1998).

    ADS  CAS  Article  Google Scholar 

  19. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

    Google Scholar 

  20. Green, W. H. Jr et al. Electronic structures and geometries of C60 anions via density functional calculations. J. Phys. Chem. 100, 14892–14898 (1996).

    CAS  Article  Google Scholar 

  21. Heid, R., Pintschovius, L. & Godard, J. M. Eigenvectors of internal vibrations of C60: Theory and experiment. Phys. Rev. B 56, 5925–5936 (1997).

    ADS  CAS  Article  Google Scholar 

  22. Chavy, C., Joachim, C. & Altibelli, A. Interpretation of STM images: C60 on the gold (110) surface. Chem. Phys. Lett. 214, 569–575 (1993).

    ADS  CAS  Article  Google Scholar 

  23. Ruoff, R. S. & Hickman, A. P. Van der Waals binding of fullerenes to a graphite plane. J. Phys. Chem. 97, 2494–2496 (1993).

    CAS  Article  Google Scholar 

  24. Schatz, G. C. & Ratner, M. A. Quantum Mechanics in Chemistry (Prentice Hall, Englewood Cliffs, 1993).

    Google Scholar 

  25. Poncharal, P., Wang, Z. L., Ugarte, D. & De Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 ( 1999).

    ADS  CAS  Article  Google Scholar 

  26. Reulet, B. et al. Bolometric detection of mechanical bending waves in suspended carbon nanotubes. Preprint cond-mat/9907486 at 〈〉 (1999).

Download references


We thank M. S. Fuhrer and N. S. Wingreen for discussions and advice. This work was supported by the US Department of Energy. E.A. was also partially supported by DARPA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul L. McEuen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, H., Park, J., Lim, A. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing