Computers are physical systems: the laws of physics dictate what they can and cannot do. In particular, the speed with which a physical device can process information is limited by its energy and the amount of information that it can process is limited by the number of degrees of freedom it possesses. Here I explore the physical limits of computation as determined by the speed of light c, the quantum scale ℏ and the gravitational constant G. As an example, I put quantitative bounds to the computational power of an ‘ultimate laptop’ with a mass of one kilogram confined to a volume of one litre.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Maxwell, J. C. Theory of Heat (Appleton, London, 1871).
Smoluchowski, F. Vorträge über die kinetische Theorie der Materie u. Elektrizitat (Leipzig, 1914).
Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Physik 53, 840– 856 (1929).
Brillouin, L. Science and Information Theory (Academic Press, New York, 1953).
Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).
Keyes, R. W. & Landauer, R. Minimal energy dissipation in logic . IBM J. Res. Dev. 14, 152– 157 (1970).
Landauer, R. Dissipation and noise-immunity in computation and communication. Nature 335, 779–784 ( 1988).
Landauer, R. Information is physical. Phys. Today 44, 23–29 (1991).
Landauer, R. The physical nature of information. Phys. Lett. A 217 , 188–193 (1996).
von Neumann, J. Theory of Self-Reproducing Automata Lect. 3 (Univ. Illinois Press, Urbana, IL, 1966).
Lebedev, D. S. & Levitin, L. B. Information transmission by electromagnetic field. Inform. Control 9, 1–22 (1966).
Levitin, L. B. in Proceedings of the 3rd International Symposium on Radio Electronics part 3, 1–15 (Varna, Bulgaria, 1970).
Levitin, L. B. Physical limitations of rate, depth, and minimum energy in information processing . Int. J. Theor. Phys. 21, 299– 309 (1982).
Levitin, L. B. Energy cost of information transmission (along the path to understanding) . Physica D 120, 162–167 (1998).
Margolus, N. & Levitin, L. B. in Proceedings of the Fourth Workshop on Physics and Computation—PhysComp96 (eds Toffoli, T., Biafore, M. & Leão, J.) (New England Complex Systems Institute, Boston, MA, 1996).
Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Physica D 120, 188– 195 (1998).
Bremermann, H. J. in Self-Organizing Systems (eds Yovits, M. C., Jacobi, G. T. & Goldstein, G. D.) 93–106 (Spartan Books, Washington DC, 1962).
Bremermann, H. J. in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (eds LeCam, L. M. & Neymen, J.) Vol. 4, 15–20 (Univ. California Press, Berkeley, CA, 1967).
Bremermann, H. J. Minimum energy requirements of information transfer and computing. Int. J. Theor. Phys. 21, 203–217 (1982).
Bekenstein, J. D. Universal upper bound on the entropy-to-energy ration for bounded systems . Phys. Rev. D 23, 287– 298 (1981).
Bekenstein, J. D. Energy cost of information transfer. Phys. Rev. Lett. 46, 623–626 (1981).
Bekenstein, J. D. Entropy content and information flow in systems with limited energy. Phys. Rev. D 30, 1669–1679 (1984).
Aharonov, Y. & Bohm, D. Time in the quantum theory and the uncertainty relation for the time and energy domain. Phys. Rev. 122, 1649–1658 ( 1961).
Aharonov, Y. & Bohm, D. Answer to Fock concerning the time-energy indeterminancy relation. Phys. Rev. B 134, 1417–1418 (1964).
Anandan, J. & Aharonov, Y. Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697–1700 (1990).
Peres, A. Quantum Theory: Concepts and Methods (Kluwer, Hingham, 1995).
Lecerf, Y. Machines de Turing réversibles. C.R. Acad. Sci. 257, 2597–2600 (1963).
Bennett, C. H. Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973).
Bennett, C.H. Thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 ( 1982).
Bennett, C. H. Demons, engines and the second law. Sci. Am. 257, 108 (1987).
Fredkin, E. & Toffoli, T. Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982).
Likharev, K. K. Classical and quantum limitations on energy consumption in computation. Int. J. Theor. Phys. 21, 311–325 (1982).
Seitz, C. L. et al. in Proceedings of the 1985 Chapel Hill Conference on VLSI (ed. Fuchs, H.) (Computer Science Press, Rockville, MD, 1985).
Merkle, R. C. Reversible electronic logic using switches. Nanotechnology 34, 21–40 (1993).
Younis, S. G. & Knight, T. F. in Proceedings of the 1993 Symposium on Integrated Systems, Seattle, Washington (eds Berrielo, G. & Ebeling, C.) (MIT Press, Cambridge, MA, 1993).
Lloyd, S. & Pagels, H. Complexity as thermodynamic depth . Ann. Phys. 188, 186–213 (1988).
Lloyd, S. Use of mutual information to decrease entropy—implications for the Second Law of Thermodynamics. Phys. Rev. A 39, 5378–5386 (1989).
Zurek, W. H. Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature 341, 119– 124 (1989).
Leff, H. S. & Rex, A. F. Maxwell's Demon: Entropy, Information, Computing (Princeton Univ. Press, Princeton, 1990).
Lloyd, S. Quantum mechanical Maxwell's demon. Phys. Rev. A 56 , 3374–3382 (1997).
Benioff, P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 ( 1980).
Benioff, P. Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581–1585 (1982).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982).
Feynman, R. P. Quantum mechanical computers. Optics News 11, 11 (1985); reprinted in Found. Phys. 16, 507 (1986).
Zurek, W. H. Reversibility and stability of information-processing systems. Phys. Rev. Lett. 53, 391–394 (1984).
Peres, A. Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985).
Deutsch, D. Quantum-theory, the Church-Turing principle, and the universal quantum computer . Proc. R. Soc. Lond. A 400, 97– 117 (1985).
Margolus, N. Quantum computation. Ann. N.Y. Acad. Sci. 480, 487–497 (1986).
Deutsch, D. Quantum computational networks. Proc. R. Soc. Lond. A 425, 73–90 (1989).
Margolus, N. in Complexity, Entropy, and the Physics of Information, Santa Fe Institute Studies in the Sciences of Complexity Vol. VIII (ed. Zurek, W. H.) 273–288 (Addison Wesley, Redwood City, 1991).
Lloyd, S. Quantum-mechanical computers and uncomputability. Phys. Rev. Lett. 71, 943–946 ( 1993).
Lloyd, S. A potentially realizable quantum computer. Science 261, 1569–1571 (1993).
Lloyd, S. Necessary and sufficient conditions for quantum computation. J. Mod. Opt. 41, 2503–2520 (1994).
Shor, P. in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society, Los Alamitos, CA, 1994).
Lloyd, S. Quantum-mechanical computers. Sci. Am. 273, 140–145 (1995).
DiVincenzo, D. Quantum computation. Science 270, 255– 261 (1995).
DiVincenzo, D. P. 2-Bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 ( 1995).
Sleator, T. & Weinfurter, H. Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087– 4090 (1995).
Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 ( 1995).
Lloyd, S. Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995).
Deutsch, D., Barenco, A. & Ekert, A. Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1995).
Cirac, J. I. & Zoller, P. Quantum computation with cold ion traps. Phys. Rev. Lett. 74, 4091– 4094 (1995).
Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing—a cavity QED model. Phys. Rev. Lett. 75, 3788– 3791 (1995).
Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase-shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
Grover, L. K. in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing 212–218 (ACM Press, New York, 1996 ).
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
Zalka, C. Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond A 454, 313–322 ( 1998).
Shor, P. W. A scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, R2493–R2496 ( 1995).
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996).
DiVincenzo, D. P. & Shor, P. W. Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260–3263 ( 1996).
Shor, P. in Proceedings of the 37th Annual Symposium on the Foundations of Computer Science 56–65 (IEEE Computer Society Press, Los Alamitos, CA, 1996).
Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454 , 385–410 (1998).
Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 ( 1998).
Cory, D. G., Fahmy, A. F. & Havel, T. F. in Proceedings of the Fourth Workshop on Physics and Computation—PhysComp96 (eds Toffoli, T., Biafore, M. & Leão, J.) 87–91 (New England Complex Systems Institute, Boston, MA, 1996).
Gershenfeld, N. A. & Chuang, I. L. Bulk spin-resonance quantum computation. Science 275, 350– 356 (1997).
Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Nature 393, 143– 146 (1998).
Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344– 346 (1998).
Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast quantum searching . Phys. Rev. Lett. 80, 3408– 3411 (1998).
Kane, B. A silicon-based nuclear-spin quantum computer. Nature 393, 133 (1998).
Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).
Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).
Lloyd, S. & Braunstein, S. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784– 1787 (1999).
Abrams, D. & Lloyd, S. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and P problems. Phys. Rev. Lett. 81, 3992–3995 (1998).
Zel'dovich, Ya. B. & Novikov, I. D. Relativistic Astrophysics (Univ. of Chicago Press, Chicago, 1971 ).
Novikov, I. D. & Frolov, V. P. Black Holes (Springer, Berlin, 1986).
Pagels, H. The Cosmic Code: Quantum Physics as the Language of Nature (Simon and Schuster, New York, 1982).
Coleman, S., Preskill, J. & Wilczek, F. Growing hair on black-holes. Phys. Rev. Lett. 67, 1975–1978 ( 1991).
Preskill, J. Quantum hair. Phys. Scr. T 36, 258– 264 (1991).
Fiola, T. M., Preskill, J. & Strominger A. Black-hole thermodynamics and information loss in 2 dimensions. Phys. Rev. D 50, 3987– 4014 (1994).
Susskind, L. & Uglum, J. Black-hole entropy in canonical quantum-gravity and superstring theory. Phys. Rev. D 50, 2700–2711 (1994).
Strominger A. & Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 37, 99– 104 (1996).
Das, S. R. & Mathur, S. D. Comparing decay rates for black holes and D-branes. Nucl. Phys. B 478, 561 –576 (1996).
Page, D. N. Particle emision rates from a black-hole: massless particles form an uncharged non-rotating black-hole. Phys. Rev. D 13, 198 (1976).
Thorne, K. S., Zurek, W. H. & Price R. H. in Black Holes: The Membrane Paradigm Ch. VIII (eds Thorne, K. S., Price, R. H. & Macdonald, D. A.) 280– 340 (Yale Univ. Press, New Haven, CT, 1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lloyd, S. Ultimate physical limits to computation. Nature 406, 1047–1054 (2000). https://doi.org/10.1038/35023282
Issue Date:
DOI: https://doi.org/10.1038/35023282
This article is cited by
-
Spin-encoded quantum computer near ultimate physical limits
Quantum Information Processing (2024)
-
Holographic complexity: braneworld gravity versus the Lloyd bound
Journal of High Energy Physics (2024)
-
Speed limit of quantum metrology
Scientific Reports (2023)
-
Molecular system for an exponentially fast growing programmable synthetic polymer
Scientific Reports (2023)
-
Fundamental energy cost of finite-time parallelizable computing
Nature Communications (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.