Transistors have continuously reduced in size and increased in switching speed since their invention in 1947. The exponential pace of transistor evolution has led to a revolution in information acquisition, processing and communication technologies. And reigning over most digital applications is a single device structure — the field-effect transistor (FET). But as device dimensions approach the nanometre scale, quantum effects become increasingly important for device operation, and conceptually new transistor structures may need to be adopted. A notable example of such a structure is the single-electron transistor, or SET1,2,3,4. Although it is unlikely that SETs will replace FETs in conventional electronics, they should prove useful in ultra-low-noise analog applications. Moreover, because it is not affected by the same technological limitations as the FET, the SET can approach closely the quantum limit of sensitivity. It might also be a useful read-out device for a solid-state quantum computer.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond
Nature Communications Open Access 26 May 2016
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Averin, D. V. & Likharev, K. K. Coulomb blockade of tunneling and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–372 ( 1986).
Fulton, T. A. & Dolan, G. J. Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987).
Meirav U., Kastner, M. A. & Wind, S. J. Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771–774 (1990).
Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 ( 1998).
Mather, J. C. Super photon counters. Nature 401, 654– 655 (1999).
Steane, A. Quantum computation. Rep. Prog. Phys. 61, 117 (1998).
Korotkov, A. N., Averin, D., Likharev, K. K. & Vasenko, S. A. in Single-Electron Tunneling and Mesoscopic Physics (eds Koch, H. & Lubbig, H.) 45–59 (Springer, Berlin, 1992).
Mar, D. J., Westervelt R. & Hopkins, P. F. Cryogenic field-effect transistor with single electronic charge sensitivity. Appl. Phys. Lett. 64, 631–633 (1994).
Keller, M. W., Eichenberger, A., Martinis, J. M. & Zimmerman, N. M. A capacitance standard based on counting electrons. Science 285, 1706–1709 (1999).
Schoelkopf, R. J., Moseley, S. H., Stahle, C. M., Wahlgreen, P. & Delsing, P. A concept for a submillimeter-wave single-photon counter? IEEE Trans. Appl. Supercond. 9, 2935–2938 (1999).
Komiyama, S., Astafiev, O., Antonov, V., Kutsuwa, T. & Hirai, H. A single-photon detector in the far-infrared range. Nature 403, 405– 407 (2000).
Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scr. T76, 165–170 (1998).
Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).
Shnirman, A. & Schoen, G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B 57, 15400–15407 (1997).
Naveh, Y. & Likharev, K. K. Modeling of 10-nm-scale ballistic MOSFET's. IEEE Electron Devices Lett. 21, 242–244 (2000).
Devoret, M. H. & Grabert, H. in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) 1– 19 (Plenum, New York, 1992).
Grabert, H. Charge fluctuations in the single-electron box: perturbation expansion in the tunneling conductance. Phys. Rev. 50, 17364–17377 (1994).
Schoeller, H. & Schoen, G. Mesoscopic quantum transport: resonant tunneling in the presence of a strong Coulomb interaction. Phys. Rev. B 50, 18436–18442 ( 1994).
Shirakashi, J., Matsumoto, K., Miura, N. & Konagai, N. Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature. Appl. Phys. Lett. 72, 1893– 1895 (1998).
Zhuang, L., Guo, L. & Chou, S. Y. Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72 , 1205–1207 (1998).
Pashkin, Yu. A., Nakamura, Y. & Tsai, J. S. Room-temperature Al single-electron transistor made by electron-beam lithography. Appl. Phys. Lett. 76, 2256–2258 (2000).
Wolf, H. et al. Investigation of the offset charge noise in single electron tunneling devices. IEEE Trans. Instrum. Measurement 46, 303–306 (1997).
Caves, C. M., Thorne, K. S., Drever, W. P., Sandberg, V. D. & Zimmermann, N. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle . Rev. Mod. Phys. 52, 341– 392 (1980).
Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).
Braginsky, V. B. & Khalili, F. Ya. Quantum Measurement (Cambridge Univ. Press, 1992).
Pospieszalski, M. W. & Wollack, E. J. in Proceedings of 2nd ESA Workshop on Millimetre Wave Technology and Applications(WPP-149) 221–226 (ESA, Paris, 1998 ).
Gurvitz, S. A. Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B 56, 15215–15223 (1997).
Korotkov, A. N. Preprint cond-mat/0003225 at 〈http://xxx.lanl.gov〉 (2000).
Zorin, A. B. Quantum-limited electrometer based on single Cooper pair tunneling. Phys. Rev. Lett. 76, 4408–4411 (1996).
André, M.-O, Mück, M., Clarke, J., Gail, J. & Heiden, C. Radio-frequency amplifier with tenth-kelvin noise temperature based on microstrip direct current superconducting quantum interference device. Appl. Phys. Lett. 75, 698–700 (1999).
Mears, C. A. et al. Quantum-limited heterodyne detection of millimeter waves using superconducting tantalum tunnel junctions. Appl. Phys. Lett. 57, 2487–2489 (1990).
Movshovich, R. et al. Observation of zero-point noise squeezing via a Josephson parametric amplifier. Phys. Rev. Lett. 65, 1419–1422 (1990).
Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).
Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).
Bocko, M. F., Herr, A. M. & Feldman, M. F. Prospects for quantum coherent computation using superconducting electronics. IEEE Trans. Appl. Supercond. 7, 3638–3641 (1997).
Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120– 126 (1998).
Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).
Averin, D. V. Adiabatic quantum computation with Cooper pairs. Solid State Commun. 105, 657–659 ( 1998).
Makhlin, Yu., Schoen, G. & Shnirman, A. Josephson-junction qubits with controlled couplings . Nature 398, 786–789 (1999).
Korotkov, A. N. & Paalanen, M. A. Charge sensitivity of radio frequency single-electron transistor. Appl. Phys. Lett. 74, 4052–4054 ( 1999).
Nogues, C. et al. Seeing a single photon without destroying it. Nature 400, 239–242 ( 1999).
Acknowledgements
This work was supported in part by the National Security Agency (NSA), the Advanced Research and Development Activity (ARDA) and the Army Research Office (ARO). One of us (M.H.D) acknowledges support from Commissariat à l'Energie Atomique (CEA). We thank D. Averin, J. Clarke, P. Delsing, D. Esteve A. Korotkov, K. Likharev, H. Mooij, D. Prober, G. Schoen and E. Wollack for helpful discussions and communications of results prior to publication.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Devoret, M., Schoelkopf, R. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000). https://doi.org/10.1038/35023253
Issue Date:
DOI: https://doi.org/10.1038/35023253
This article is cited by
-
Demonstration and operation of quantum harmonic oscillators in an AlGaAs-GaAs heterostructure
Frontiers of Physics (2023)
-
Cryogenic amplification of image-charge detection for readout of quantum states of electrons on liquid helium
Journal of Low Temperature Physics (2021)
-
Single-electron pumping in a ZnO single-nanobelt quantum dot transistor
Science China Physics, Mechanics & Astronomy (2020)
-
Analytical Modeling of Current and Quantum Capacitance of Single-Electron Transistor with Island Made of Armchair WSe2 Nanoribbon
Journal of Electronic Materials (2020)
-
High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor
Journal of Low Temperature Physics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.