Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ

A Corrigendum to this article was published on 04 December 2003


Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily conserved lipid kinases that regulate a vast array of fundamental cellular responses, including proliferation, transformation, differentiation and protection from apoptosis1,2. PI(3)K-mediated activation of the cell survival kinase PKB/Akt, and negative regulation of PI(3)K signalling by the tumour suppressor PTEN (refs 3, 4) are key regulatory events in tumorigenesis5,6,7. Thus, a model has arisen that PI(3)Ks promote development of cancers. Here we report that genetic inactivation of the p110γ catalytic subunit of PI(3)Kγ (ref. 8) leads to development of invasive colorectal adenocarcinomas in mice. In humans, p110γ protein expression is lost in primary colorectal adenocarcinomas from patients and in colon cancer cell lines. Overexpression of wild-type or kinase-dead p110γ in human colon cancer cells with mutations of the tumour suppressors APC and p53 , or the oncogenes β-catenin and Ki-ras, suppressed tumorigenesis. Thus, loss of p110γ in mice leads to spontaneous, malignant epithelial tumours in the colorectum and p110γ can block the growth of human colon cancer cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Formation of colorectal adenocarcinomas in p110γ-/- mice.
Figure 2: APC and β-catenin expression in neoplastic lesions.
Figure 3: Upregulation of cell-cycle molecules and increased proliferation in p110γ-/- tumours.
Figure 4: Decreased expression of p110γ protein in human colon cancer cell lines and primary colon cancers from patients.
Figure 5: Overexpression of p110γ suppresses in vitro colony formation and in vivo tumour growth of human colon cancer cell lines.


  1. 1

    Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387 , 673–676 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Leevers, S. J., Vanhaesebroeck, B. & Waterfield, M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol. 11 , 219–225 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240 –4245 (1999).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Franke, T. F., Kaplan, D. R. & Cantley, L. C. PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437 ( 1997).

    CAS  Article  Google Scholar 

  6. 6

    Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99-102 (1999 ).

    Article  Google Scholar 

  7. 7

    Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040 –1046 (2000).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Stephens, L. R. et al. The G βγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89, 105–114 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Li, Z. et al. Roles of PLC-β2 and-β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046—1049 (2000).

    Google Scholar 

  12. 12

    Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049– 1053 (2000).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159 –170 (1996).

    CAS  Article  Google Scholar 

  14. 14

    MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 ( 1995).

    CAS  Article  Google Scholar 

  15. 15

    Bernstein, H. G., Keilhoff, G., Reiser, M., Freese, S. & Wetzker, R. Tissue distribution and subcellular localization of a G-protein activated phosphoinositide 3-kinase. An immunohistochemical study. Cell Mol. Biol. 44, 973– 983 (1998).

    CAS  PubMed  Google Scholar 

  16. 16

    White, R. L. Tumor suppressing pathways. Cell 92, 591 –592 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Zhou, S., Kinzler, K. W. & Vogelstein, B. Going mad with Smads. N. Engl. J. Med. 341, 1144–1146 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787 (1997).

    Article  Google Scholar 

  19. 19

    He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 ( 1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Groden, J. et al. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res. 55, 1531–1539 (1995).

    CAS  Google Scholar 

  22. 22

    Boutron, M. C., Wilpart, M. & Faivre, J. Diet and colorectal cancer. Eur. J. Cancer Prev. 1, 13–20 ( 1991).

    Article  Google Scholar 

  23. 23

    Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet. 10, 143– 150 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Fata, J. E., Leco, K. J., Moorehead, R. A., Martin, D. C. & Khokha, R. Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev. Biol. 211, 238–254 (1999).

    CAS  Article  Google Scholar 

Download references


We thank M. Saunders for scientific editing and J. Ho, K. Jazier, M. Crackower, A. Oliveira-dos-Santos, L. Zhang, N. Joza, C. Krawczyk, I. Kozieradzki, M. Cheng, R. Sarao, Y.-Y. Kong, M. Nghiem, Q. Liu, E. Griffith, R. Williams, C. Sirard, V. Stambulic, M. Reth, C. Potten, A. Nepren, H. Okada, Y. Jang, S. Pownall, D. Lacey and W. Boyle for reagents and helpful discussions. This work is supported by grants from Amgen, the National Cancer Institute of Canada and the Canadian Center of Excellence for Tumor Vaccination.

Author information



Corresponding author

Correspondence to Josef M. Penninger.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sasaki, T., Irie-Sasaki, J., Horie, Y. et al. Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ . Nature 406, 897–902 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing