Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution

Abstract

Netrin is a secreted protein that can act as a chemotropic axon guidance cue1,2. Two classes of Netrin receptor, DCC3,4,5 and UNC-5 (refs 6,7,8,9), are required for axon guidance3,4,6,7,8,9,10,11 and are thought to mediate Netrin signals in growth cones through their cytoplasmic domains12,13. However, in the guidance of Drosophila photoreceptor axons, the DCC orthologue Frazzled3 is required not in the photoreceptor neurons but instead in their targets, indicating that Frazzled also has a non-cell-autonomous function14. Here we show that Frazzled can capture Netrin and ‘present’ it for recognition by other receptors. Moreover, Frazzled itself is actively localized within the axon through its cytoplasmic domain, and thereby rearranges Netrin protein into a spatial pattern completely different from the pattern of Netrin gene expression. Frazzled-dependent guidance of one pioneer neuron in the central nervous system can be accounted for solely on the basis of this ability of Frazzled to control Netrin distribution, and not by Frazzled signalling. We propose a model of patterning mechanism in which a receptor rearranges secreted ligand molecules, thereby creating positional information for other receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frazzled relocates Netrin.
Figure 2: Functional domains of the Frazzled molecule.
Figure 3: Axonal guidance of dMP2.
Figure 4: MP2 growth cones respond to ectopic Netrin-B.The behaviour of the dMP2 growth cones in wild type (a) and upon ectopic expression of Fra-ΔC (b; UAS–fra-ΔC/G4-605) and Netrin-B (c; UAS–Netrin-B/G4-605). dMP2 growth cones (red) visualized by monoclonal antibody 22C10 in stage 12/0 embryos.

Similar content being viewed by others

References

  1. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  2. de la Torre, J. R. et al. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 6, 1211 –1224 (1997).

    Article  Google Scholar 

  3. Kolodziej, P. A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  4. Chan, S. S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 ( 1996).

    Article  CAS  Google Scholar 

  5. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  6. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  Google Scholar 

  7. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 ( 1993).

    Article  ADS  CAS  Google Scholar 

  8. Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838– 842 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Leonardo, E. D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833– 838 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796– 804 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Przyborski, S. A., Knowles, B. B. & Ackerman, S. L. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125, 41–50 ( 1998).

    CAS  PubMed  Google Scholar 

  12. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927– 941 (1999).

    Article  CAS  Google Scholar 

  13. Bashaw, G. J. & Goodman, C. S. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97, 917– 926 (1999).

    Article  CAS  Google Scholar 

  14. Gong, Q., Rangarajan R., Seeger, M. & Gaul, U. The Netrin receptor Frazzled is required in the target for establishment of retinal projections in the Drosophila visual system. Development 126, 1451–1456 (1999).

    CAS  PubMed  Google Scholar 

  15. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  Google Scholar 

  16. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425– 435 (1994).

    Article  CAS  Google Scholar 

  17. Mitchell, K. J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 ( 1996).

    Article  CAS  Google Scholar 

  18. Harris, R., Sabatelli, L. M., & Seeger, M. A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron 17, 217– 228 (1996).

    Article  CAS  Google Scholar 

  19. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61– 85 (1990).

    Article  CAS  Google Scholar 

  20. Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    Article  CAS  Google Scholar 

  21. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 ( 1992).

    Article  CAS  Google Scholar 

  22. Colamarino, S. A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    Article  CAS  Google Scholar 

  23. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  Google Scholar 

  24. Jacobs, J. R. & Goodman, C. S. Embryonic development of axon pathways in the Drosophila CNS. II. Behavior of pioneer growth cones. J. Neurosci. 9, 2412–2422 (1989).

    Article  CAS  Google Scholar 

  25. Hidalgo, A. & Brand, A. H. Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila . Development 124, 3253– 3262 (1997).

    CAS  PubMed  Google Scholar 

  26. Ramírez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599– 607 (1999).

    Article  Google Scholar 

  27. Winberg, M. L., Mitchell, K. J. & Goodman, C. S. Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of netrins, semaphorins, and IgCAMs. Cell 93, 581– 591 (1998).

    Article  CAS  Google Scholar 

  28. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 ( 1993).

    CAS  Google Scholar 

  29. Ashburner, M. Drosophila, a Laboratory Manual. (CSHL, Cold Spring Harbor, 1989).

    Google Scholar 

  30. Fujita, S. C., Zipursky, S. L., Benzer, S., Ferrus, A. & Shotwell, S. L. Monoclonal antibodies against the Drosophila nervous system. Proc. Natl Acad. Sci. USA 79, 7929–7933 ( 1982).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Chiba, C. S. Goodman, A. Hidalgo, P. Kolodziej, M. Seeger and G. Technau for fly strains; P. Kolodziej and M. Seeger for DNA clones and antibodies; T. Hosoya, Y. Umesono, M. Okabe and all members of the Hotta laboratory for helpful discussions; and Y. Fujioka, M. Seki, M. Sakai and C. Asaka for technical assistance. This work was funded by CREST (Y. Hotta and Y. Hiromi), the Ministry of Education, Science, Sports, and Culture of Japan, and Research for the Future Program of JSPS (Y. Hiromi) and NIH (E.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Hotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiramoto, M., Hiromi, Y., Giniger, E. et al. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000). https://doi.org/10.1038/35022571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022571

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing