Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiscale modelling of plastic flow localization in irradiated materials

Abstract

The irradiation of metals by energetic particles causes significant degradation of the mechanical properties1,2, most notably an increased yield stress and decreased ductility, often accompanied by plastic flow localization. Such effects limit the lifetime of pressure vessels in nuclear power plants3, and constrain the choice of materials for fusion-based alternative energy sources4. Although these phenomena have been known for many years1, the underlying fundamental mechanisms and their relation to the irradiation field have not been clearly demonstrated. Here we use three-dimensional multiscale simulations of irradiated metals to reveal the mechanisms underlying plastic flow localization in defect-free channels. We observe dislocation pinning by irradiation-induced clusters of defects, subsequent unpinning as defects are absorbed by the dislocations, and cross-slip of the latter as the stress is increased. The width of the plastic flow channels is limited by the interaction among opposing dislocation dipole segments and the remaining defect clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defect-free channel in deformed irradiated Cu.
Figure 2: Molecular dynamics simulation of the interaction between an edge dislocation and an overlapping, truncated vacancy stacking-fault tetrahedron (SFT) in Cu.
Figure 3: Dislocation dynamics (DD) results of stress–strain curves.
Figure 4: Dislocation dynamics results of channel formation and flow localization.

Similar content being viewed by others

References

  1. Eyre, B. L. & Barlett, A. F. An electron microscope study of neutron irradiation damage on α-iron. Phil. Mag. 12, 261–271 (1965).

    Article  ADS  Google Scholar 

  2. Victoria, M. et al. The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114–122 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Odette, G. R. & Lucas, G. E. Recent progress in understanding reactor pressure vessel steel embrittlement. Radiat. Effects Defects Solids 144, 189–231 ( 1998).

    Article  ADS  CAS  Google Scholar 

  4. Bloom, E. E. The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258–263, 7– 17 (1998).

    Article  ADS  Google Scholar 

  5. Averback, R. S. & Diaz de la Rubia, T. in Solid State Physics Vol. 51 (eds Spaepen, F. et al. & Ehrenreich, H.) 281–402 (Academic, New York, 1998).

    Google Scholar 

  6. Dai, Y. & Victoria, M. Defect cluster structure and tensile properties of Cu single crystals irradiated with 600 MeV protons. MRS Symp. Proc. 439, 319–324 (1997).

    Article  CAS  Google Scholar 

  7. Friedel, J. Dislocations (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  8. Bement, A. L. Fundamental materials problems in nuclear reactors. In Proc. 2nd Int. Conf. Strength of Metals Alloys Vol. II, 693– 728 (The American Society for Metals, 1970).

    Google Scholar 

  9. Trinkaus, H., Singh, B. N. & Foreman, A. J. E. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation. J. Nucl. Mater. 251, 172–187 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Singh, B. N., Foreman, A. J. E. & Trinkaus, H. Radiation hardening revisited: role of intracascade clustering. J. Nucl. Mater. 249, 103– 115 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Diaz de la Rubia, T. & Guinan, M. W. New mechanism of defect production in metals: A molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades. Phys. Rev. Lett. 66, 2766–2769 ( 1991).

    Article  ADS  CAS  Google Scholar 

  12. Foreman, A. J. E., Phythian, W. J. & English, C. A. The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential. Phil. Mag. A 66, 671–695 ( 1992).

    Article  ADS  CAS  Google Scholar 

  13. Wirth, B. D., Odette, G. R., Maroudas, D. & Lucas, G. E. J. Nucl. Mater. 244, 185–194 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Osetsky, Y. N., Bacon, D. J. & Serra, A. Thermally activated glide of small dislocation loops in metals. Phil. Mag. Lett. 79, 273– 282 (1999).

    Article  CAS  Google Scholar 

  15. Wirth, B. D., Bulatov, V. & Diaz de la Rubia, T. Atomistic simulation of stacking fault tetrahedra formation in Cu. Proc. Int. Conf. Fusion Reactor Materials ICFRM-9, J. Nucl. Mater. (in the press).

  16. Heinisch, H. L. Computer simulation of high energy displacement cascades. Radiat. Effects Defects Solids 113, 53–73 (1990).

    Article  Google Scholar 

  17. Caturla, M. J. et al. Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 13– 21 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Soneda, N. & Diaz de la Rubia, T. Defect production, annealing kinetics and damage evolution in alpha-Fe: an atomic-scale computer simulation. Phil. Mag. A 78, 995–1019 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Singh, B. N. & Zinkle, S. J. Defect accumulation in pure fcc metals in the transient regime: a review. J. Nucl. Mater. 206, 212–229 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Baluc, N., Dai, Y. & Victoria, M. Plasticity and microstructure of irradiated Pd. MRS Symp. Proc. 540, 555–560 (1999).

    Article  CAS  Google Scholar 

  21. Baluc, N., Bailat, C., Luppo, M.-I., Schaublin, R. & Victoria, M. Comparison of the microstructure and tensile behavior irradiated fcc and bcc metals. MRS Symp. Proc. 540, 539–548 (1999).

    Article  CAS  Google Scholar 

  22. Zbib, H. M., Rhee, M. & Hirth, J. P. On plastic deformation and the dynamics of 3D dislocations. Int. J. Mech. Sci. 40, 113– 127 (1998).

    Article  Google Scholar 

  23. Rhee, M., Zbib, H. M., Hirth, J. P., Huang, H. & Diaz de la Rubia, T. Models for long/short range interactions in 3D dislocation simulation. Model. Simul. Mater. Sci. Eng. 6, 467–492 ( 1998).

    Article  ADS  CAS  Google Scholar 

  24. Zbib, H. M., Diaz de la Rubia, T., Rhee, M. & Hirth, J. P. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. J. Nucl. Mater. 276, 154–165 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Rhee, M., Lassila, D. H., Bulatov, V. V., Hshuing, L. & Diaz de la Rubia, T. Dislocation multiplication and the early stages of plastic deformation in bcc molybdenum: a dislocation dynamics numerical simulation. Phys. Rev. Lett. (submitted).

  26. Khraishi, T. A., Zbib, H. M., Hirth, J. P. & Diaz de la Rubia, T. The stress field of a general circular Volterra dislocation loop: analytical and numerical approaches. Phil. Mag. Lett. 80, 95–105 (2000).

    Article  CAS  Google Scholar 

  27. Ghoniem, N. M., Singh, B. N., Sun, L. Z. & Diaz de la Rubia, T. Interaction and accumulation of glissile defect clusters near dislocations. J. Nucl. Mater. 276, 166–177 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Rodney, D. & Martin, G. Dislocation pinning by small interstitial loops: a molecular dynamics study. Phys. Rev. Lett. 82, 3272–3275 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Khraishi, T. A., Zbib, H. M., Diaz de la Rubia, T. & Victoria, M. Localized deformation and hardening in irradiated metals: 3D discrete dislocation dynamics simulations. Acta Metall. Mater. (submitted).

Download references

Acknowledgements

This work was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory. Work by M.V. was performed under a contract of the Swiss National Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Diaz de la Rubia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz de la Rubia, T., Zbib, H., Khraishi, T. et al. Multiscale modelling of plastic flow localization in irradiated materials . Nature 406, 871–874 (2000). https://doi.org/10.1038/35022544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing