Abstract
When confined to two dimensions and exposed to a strong magnetic field, electrons screen the Coulomb interaction in a topological fashion; they capture an even number of quantum vortices and transform into particles called ‘composite fermions’ (refs 1,2,3). The fractional quantum Hall effect4 occurs in such a system when the ratio (or ‘filling factor’, ν) of the number of electrons and the degeneracy of their spin-split energy states (the Landau levels) takes on particular values. The Landau level filling ν = 1/2 corresponds to a metallic state in which the composite fermions form a gapless Fermi sea5,6,7,8. But for ν = 5/2, a fractional quantum Hall effect is observed instead9,10; this unexpected result is the subject of considerable debate and controversy11. Here we investigate the difference between these states by considering the theoretical problem of two composite fermions on top of a fully polarized Fermi sea of composite fermions. We find that they undergo Cooper pairing to form a p-wave bound state at ν = 5/2, but not at ν = 1/2. In effect, the repulsive Coulomb interaction between electrons is overscreened in the ν = 5/2 state by the formation of composite fermions, resulting in a weak, attractive interaction.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Heinonen, O. (ed.) Composite Fermions (World Scientific, New York, 1998 ).
Das Sarma, S. & Pinczuk, A. (eds) Perspectives in Quantum Hall Effects (Wiley, New York, 1997).
Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559– 1562 (1982).
Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 ( 1993).
Willett, R. L. et al. Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level. Phys. Rev. Lett. 71, 3846–3849 (1993).
Goldman, V. J. et al. Detection of composite fermions by magnetic focusing. Phys. Rev. Lett. 72, 2065–2068 (1994).
Kang, W. et al. How real are composite fermions? Phys. Rev. Lett. 71, 3850–3853 (1993).
Willett, R. L. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1779–1782 (1987).
Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 ( 1999).
Eisenstein, J. P. in Perspectives in Quantum Hall Effects (eds Das Sarma, S. & Pinczuk, A.) 37–70 (Wiley, New York, 1997).
Kamilla, R. K. & Jain, J. K. Excitonic instability and termination of fractional quantum Hall effect. Phys. Rev. B 55, R13417–R13420 ( 1997).
Park, K. & Jain, J. K. Spontaneous magnetization of composite fermions. Phys. Rev. Lett. 83, 5543– 5546 (1999).
Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005– 5016 (1989).
Haldane, F. D. M. Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983).
Wu, T. T. & Yang, C. N. Dirac monopole without string: Monopole harmonics. Nucl. Phys. B 107, 365– 380 (1976).
Wojs, A. & Quinn, J. J. Hund's rule for monopole harmonics, or why the composite fermion picture works. Solid State Commun. 110, 45–49 ( 1999).
Park, K., Melik-Alaverdian, V., Bonesteel, N. E. & Jain, J. K. Possibility of p-wave pairing of composite fermions at ν = 1/2. Phys. Rev. B 58, R10167– R10170 (1998).
Jain, J. K. & Kamilla, R. K. Composite fermions in the Hilbert space of the lowest electronic Landau level. Int. J. Mod. Phys. B 11, 2621–2660 ( 1997).
Wu, X. G. & Jain, J. K. Excitation spectrum and collective modes of composite fermions. Phys. Rev. B 51, 1752–1761 (1995).
Fang, F. F. & Howard, W. E. Negative field-effect mobility on (100) Si surfaces. Phys. Rev. Lett. 16, 797–800 (1966).
Zhang, F. C. & Das Sarma, S. Excitation gap in the fractional quantum Hall effect: Finite layer thickness corrections. Phys. Rev. B 33, 2903–2906 ( 1986).
Greiter, M., Wen, X. G. & Wilczek, F. Paired Hall states. Nucl. Phys. B 374, 567–614 (1992).
Bonesteel, N. E. Singular pair breaking in the composite Fermi liquid description of the half-filled Landau level. Phys. Rev. Lett. 82, 984– 987 (1999).
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362– 396 (1991).
Morf, R. Transition from quantum Hall to compressible states in the second Landau level: new light on the ν = 5/2 enigma. Phys. Rev. Lett. 80, 1505–1508 (1998).
Rezayi, E. H. & Haldane, F. D. M. Transition from paired quantum Hall to compressible states at the half filling of the lowest two Landau levels. Preprint cond-mat/9906137 at 〈http://xxx.lanl.gov〉 (1999).
Acknowledgements
This work was supported in part by the National Science Foundation. We thank the Numerically Intensive Computing Group led by V. Agarwala, J. Holmes and J. Nucciarone, at the Penn State University CAC, for assistance and computing time with the LION-X cluster.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Scarola, V., Park, K. & Jain, J. Cooper instability of composite fermions. Nature 406, 863–865 (2000). https://doi.org/10.1038/35022524
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35022524
This article is cited by
-
Electron–electron interactions and the paired-to-nematic quantum phase transition in the second Landau level
Nature Communications (2018)
-
Even-denominator fractional quantum Hall physics in ZnO
Nature Physics (2015)
-
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Nature Physics (2007)
-
Composite fermions pair up
Nature (2000)