Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooper instability of composite fermions

Abstract

When confined to two dimensions and exposed to a strong magnetic field, electrons screen the Coulomb interaction in a topological fashion; they capture an even number of quantum vortices and transform into particles called ‘composite fermions’ (refs 1,2,3). The fractional quantum Hall effect4 occurs in such a system when the ratio (or ‘filling factor’, ν) of the number of electrons and the degeneracy of their spin-split energy states (the Landau levels) takes on particular values. The Landau level filling ν = 1/2 corresponds to a metallic state in which the composite fermions form a gapless Fermi sea5,6,7,8. But for ν = 5/2, a fractional quantum Hall effect is observed instead9,10; this unexpected result is the subject of considerable debate and controversy11. Here we investigate the difference between these states by considering the theoretical problem of two composite fermions on top of a fully polarized Fermi sea of composite fermions. We find that they undergo Cooper pairing to form a p-wave bound state at ν = 5/2, but not at ν = 1/2. In effect, the repulsive Coulomb interaction between electrons is overscreened in the ν = 5/2 state by the formation of composite fermions, resulting in a weak, attractive interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density of states (DOS) for electrons and composite fermions at zero effective magnetic flux.
Figure 2: The interaction energy of pairs of electrons and pairs of composite fermions at zero effective magnetic flux as a function of angular momentum L.
Figure 3: The binding energy of the composite fermion (CF) pair in the L = 1 channel at ν = 1/2 and 5/2 as a function of 1/ N.

Similar content being viewed by others

References

  1. Heinonen, O. (ed.) Composite Fermions (World Scientific, New York, 1998 ).

    Book  Google Scholar 

  2. Das Sarma, S. & Pinczuk, A. (eds) Perspectives in Quantum Hall Effects (Wiley, New York, 1997).

    Google Scholar 

  3. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559– 1562 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 ( 1993).

    Article  ADS  CAS  Google Scholar 

  6. Willett, R. L. et al. Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level. Phys. Rev. Lett. 71, 3846–3849 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Goldman, V. J. et al. Detection of composite fermions by magnetic focusing. Phys. Rev. Lett. 72, 2065–2068 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Kang, W. et al. How real are composite fermions? Phys. Rev. Lett. 71, 3850–3853 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Willett, R. L. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1779–1782 (1987).

    Article  ADS  Google Scholar 

  10. Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 ( 1999).

    Article  ADS  CAS  Google Scholar 

  11. Eisenstein, J. P. in Perspectives in Quantum Hall Effects (eds Das Sarma, S. & Pinczuk, A.) 37–70 (Wiley, New York, 1997).

    Google Scholar 

  12. Kamilla, R. K. & Jain, J. K. Excitonic instability and termination of fractional quantum Hall effect. Phys. Rev. B 55, R13417–R13420 ( 1997).

    Article  ADS  CAS  Google Scholar 

  13. Park, K. & Jain, J. K. Spontaneous magnetization of composite fermions. Phys. Rev. Lett. 83, 5543– 5546 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005– 5016 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Haldane, F. D. M. Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Wu, T. T. & Yang, C. N. Dirac monopole without string: Monopole harmonics. Nucl. Phys. B 107, 365– 380 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  17. Wojs, A. & Quinn, J. J. Hund's rule for monopole harmonics, or why the composite fermion picture works. Solid State Commun. 110, 45–49 ( 1999).

    Article  ADS  CAS  Google Scholar 

  18. Park, K., Melik-Alaverdian, V., Bonesteel, N. E. & Jain, J. K. Possibility of p-wave pairing of composite fermions at ν = 1/2. Phys. Rev. B 58, R10167– R10170 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Jain, J. K. & Kamilla, R. K. Composite fermions in the Hilbert space of the lowest electronic Landau level. Int. J. Mod. Phys. B 11, 2621–2660 ( 1997).

    Article  ADS  CAS  Google Scholar 

  20. Wu, X. G. & Jain, J. K. Excitation spectrum and collective modes of composite fermions. Phys. Rev. B 51, 1752–1761 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Fang, F. F. & Howard, W. E. Negative field-effect mobility on (100) Si surfaces. Phys. Rev. Lett. 16, 797–800 (1966).

    Article  ADS  Google Scholar 

  22. Zhang, F. C. & Das Sarma, S. Excitation gap in the fractional quantum Hall effect: Finite layer thickness corrections. Phys. Rev. B 33, 2903–2906 ( 1986).

    Article  ADS  CAS  Google Scholar 

  23. Greiter, M., Wen, X. G. & Wilczek, F. Paired Hall states. Nucl. Phys. B 374, 567–614 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  24. Bonesteel, N. E. Singular pair breaking in the composite Fermi liquid description of the half-filled Landau level. Phys. Rev. Lett. 82, 984– 987 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362– 396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  26. Morf, R. Transition from quantum Hall to compressible states in the second Landau level: new light on the ν = 5/2 enigma. Phys. Rev. Lett. 80, 1505–1508 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Rezayi, E. H. & Haldane, F. D. M. Transition from paired quantum Hall to compressible states at the half filling of the lowest two Landau levels. Preprint cond-mat/9906137 at 〈http://xxx.lanl.gov〉 (1999).

Download references

Acknowledgements

This work was supported in part by the National Science Foundation. We thank the Numerically Intensive Computing Group led by V. Agarwala, J. Holmes and J. Nucciarone, at the Penn State University CAC, for assistance and computing time with the LION-X cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarola, V., Park, K. & Jain, J. Cooper instability of composite fermions. Nature 406, 863–865 (2000). https://doi.org/10.1038/35022524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing