Potential for biomolecular imaging with femtosecond X-ray pulses


Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells1. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements1,2. Analyses of the dynamics of damage formation3,4,5 suggest that the conventional damage barrier (about 200 X-ray photons per Å2 with X-rays of 12 keV energy or 1 Å wavelength2) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers6,7 that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ionization of a lysozyme molecule in intense X-ray pulses.
Figure 2: Explosion of T4 lysozyme (white, H; grey, C; blue, N; red, O; yellow, S) induced by radiation damage.
Figure 3: Elastic scattering from a variety of samples.
Figure 4: The landscape of damage tolerance.


  1. 1

    Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 ( 1995).

    CAS  Article  Google Scholar 

  2. 2

    Henderson, R. Cryoprotection of protein crystals against radiation-damage in electron and X-ray diffraction. Proc. R. Soc. Lond. B 241, 6–8 (1990).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Solem, J. C. Imaging biological specimens with high-intensity soft X-rays. J. Opt. Soc. Am. B 3, 1551–1565 (1986).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hajdu, J. in Frontiers in Drug Research (eds Jensen, B., Jorgensen, F. S. & Kofod, H.) 375–395 (Alfred Benzon Symposium 28, Munksgaard, Copenhagen, 1990).

    Google Scholar 

  5. 5

    Doniach, S. Studies of structure of matter with photons from an X-ray free electron laser. J. Synchr. Rad. 3, 260– 267 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Winick, H. The linac coherent light source (LCLS): A fourth-generation light source using the SLAC linac. J. Elec. Spec. Rel. Phenom. 75, 1–8 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Wiik, B. H. The TESLA project: an accelerator facility for basic science. Nucl. Inst. Meth. Phys. Res. B 398, 1– 8 (1997).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Dyson, N. A. X-Rays in Atomic and Nuclear Physics (Longman, London, 1973).

    Google Scholar 

  9. 9

    Krause, M. O. & Oliver, J. H. Natural width of atomic K and L level Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 8, 329–338 (1979).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Veigele, W. J. Photon cross sections from 0.1 keV to 1 MeV for elements with Z = 1 to Z = 94. Atomic Data 5, 51– 111 (1973).

    ADS  Article  Google Scholar 

  11. 11

    Hubbell, J. H. et al. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–494 (1975).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ditmire, T. Simulation of exploding clusters ionized by high-intensity femtosecond laser pulses. Phys. Rev. A 57, 4094– 4097 (1998).

    ADS  Article  Google Scholar 

  13. 13

    Reiss, H. R. Physical basis for strong-field stabilization of atoms against ionization. Laser Phys 7, 543–550 (1997).

    CAS  Google Scholar 

  14. 14

    Weaver, L. H. & Matthews, B. W. Structure of bacteriophage T4 lysozyme refined at 1.7 ångstroms resolution. J. Mol. Biol. 193, 189–199 ( 1987).

    CAS  Article  Google Scholar 

  15. 15

    Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490– 492 (1997).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. Tomato bushy stunt virus at 2.9 Å resolution. Nature 276, 368– 372 (1978).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bottcher, B., Wynne, S. A. & Crowther, R. A. Determination of the fold of the core protein of hepatitis b virus by electron cryomicroscopy. Nature 386, 88–91 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    van Heel, M. et al. Angular reconstitution in three-dimensional electron microscopy. Historical and theoretical aspects. Scanning Micros. 11, 195–210 (1997).

    Google Scholar 

  19. 19

    Mueller, F. et al. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 angstrom resolution. J. Mol. Biol. 298, 35–59 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Stowell, M. H. B., Miyazawa, A. & Unwin, N. Macromolecular structure determination by electron microscopy: new advances and recent results. Curr. Opin. Struct. Biol. 8, 595–600 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342 –344 (1999).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Szöke, A. Holographic methods in X-ray crystallography. 2. Detailed theory and connection to other methods of crystallography. Acta Crystallogr. A 49, 853–866 (1993).

    Article  Google Scholar 

  23. 23

    Faigel, G. & Tegze, M. X-ray holography. Rep. Progr. Phys. 62, 355-393 (1999 ).

    ADS  Article  Google Scholar 

  24. 24

    Tito, M. A., Tars, K., Valegard, K., Hajdu, J. & Robinson, C. V. Electrospray time of flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 122, 3550–3551 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Siuzdak, G. et al. Mass-spectrometry and viral analysis. Chem. Biol. 3, 45–48 (1996 ).

    CAS  Article  Google Scholar 

  26. 26

    Rostom, A. A. Detection and characterization of intact ribosomes in the gas phase of a mass spectrometer. Proc. Natl Acad. Sci. USA 97, 5185–5190 (2000).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lin, T. W., Porta, C., Lomonossoff, G. & Johnson, J. E. Structure-based design of peptide presentation on a viral surface: The crystal structure of a plant/animal virus chimera at 2.8 Ångström resolution. Fold. Des. 1, 179– 187 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43 –56 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29

    van Gunsteren, W. F. & Berendsen, H. J. C. Gromos-87 Manual (Biomos BV, Groningen, 1987).

    Google Scholar 

  30. 30

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. in Intermolecular Forces (ed. Pullman, B.) 331– 342. (D. Reidel, Dordrecht, 1981).

    Google Scholar 

Download references


We are grateful to G. Faigel, S. Hovmöller, A. Szöke, M. van Heel and A. Pratt for discussions. This work was supported by the Swedish Research Councils NFR and TFR as well as the EU-BIOTECH programme.

Author information



Corresponding author

Correspondence to Janos Hajdu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neutze, R., Wouts, R., van der Spoel, D. et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). https://doi.org/10.1038/35021099

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.