Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Timing of the Last Glacial Maximum from observed sea-level minima

A Corrigendum to this article was published on 05 July 2001

Abstract

During the Last Glacial Maximum, ice sheets covered large areas in northern latitudes and global temperatures were significantly lower than today. But few direct estimates exist of the volume of the ice sheets, or the timing and rates of change during their advance and retreat1,2. Here we analyse four distinct sediment facies in the shallow, tectonically stable Bonaparte Gulf, Australia—each of which is characteristic of a distinct range in sea level—to estimate the maximum volume of land-based ice during the last glaciation and the timing of the initial melting phase. We use faunal assemblages and preservation status of the sediments to distinguish open marine, shallow marine, marginal marine and brackish conditions, and estimate the timing and the mass of the ice sheets using radiocarbon dating and glacio-hydro-isostatic modelling. Our results indicate that from at least 22,000 to 19,000 (calendar) years before present, land-based ice volume was at its maximum, exceeding today's grounded ice sheets by 52.5 × 106 km3. A rapid decrease in ice volume by about 10% within a few hundred years terminated the Last Glacial Maximum at 19,000 ± 250 years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and stratigraphy of the Bonaparte cores.
Figure 2: Sea level and ice volumes during the LGM.

Similar content being viewed by others

References

  1. CLIMAP Project Members. Seasonal reconstructions of the earth's surface at the Last Glacial Maximum. Geol. Soc. Am. Map Chart Ser. MC-36, 1–18 (1981).

    Google Scholar 

  2. Bard, E. Ice age temperatures and geochemistry. Science 284, 1133–1134 (1999).

    Article  CAS  Google Scholar 

  3. Stuiver, M. & Braziunas, T. F. Modeling atmospheric 14C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189 (1993).

    Article  CAS  Google Scholar 

  4. Edwards, R. L. et al. A large drop in atmospheric 14C /12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260, 962–968 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  6. Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. & Cabioch, G. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals. An updated data base including samples from Barbados, Mururoa, and Tahiti. Radiocarbon 40, 1085–1092 (1998).

    Article  CAS  Google Scholar 

  7. van Andel, T. H., Heath, G. R., Moore, T. C. & McGeary, D. F. R. Late Quaternary history, climate, and oceanography of the Timor sea, Northwestern Australia. Am. J. Sci. 265, 737–758 (1967).

    Article  ADS  Google Scholar 

  8. De Decker, P. An account of the techniques using ostracods in palaeolimnology in Australia. Palaeogeogr. Palaeoclimat. Palaeoecol. 62, 463–475 (1988).

    Article  ADS  Google Scholar 

  9. Yassini, I. & Jones, B. G. (eds) Recent Foraminifera and Ostracoda from Estuarine and Shelf Environments on the Southeastern Coast of Australia (Univ. Wollongong Press, 1995).

    Google Scholar 

  10. Farrell, W. E. & Clark, J. A. On postglacial sealevel. Geophys. J. 46, 79–116 (1976).

    Google Scholar 

  11. Nakada, M. & Lambeck, K. Glacial rebound and relative sea-level variations: a new appraisal. Geophys. J. R. Astron. Soc. 90, 171–224 (1987).

    Article  ADS  Google Scholar 

  12. Lambeck, K. & Nakada, M. Late Pleistocene and Holocene sea-level change along the Australian coast. Palaeoceogr. Palaeoclimatol. Palaeoecol. 89, 143–176 (1990).

    Article  ADS  Google Scholar 

  13. Lambeck, K., Smith, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int. 134, 102–144 (1998).

    Article  ADS  Google Scholar 

  14. Nakada, M. & Lambeck, K. The melting history of the Late Pleistocene Antarctic ice sheet. Nature 33, 36–40 (1988).

    Article  ADS  Google Scholar 

  15. Fleming, K. et al. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet. Sci. Lett. 163, 327–342 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Ferland, M. A., Roy, P. S. & Murray–Wallace, C. V. Glacial lowstand deposits on the outer continental shelf of southeastern Australia. Quat. Res. 44, 294–299 (1995).

    Article  CAS  Google Scholar 

  17. Ota, Y., Matsushima, Y. & Moriwaki, H. Notes on the Holocene sea-level study in Japan. Quat. Res. Jpn 21, 133–143 (1982).

    Article  Google Scholar 

  18. Colonna, M., Casanova, J., Dullo, W.-C. & Camoin, G. Sea-level changes and δ18O record for the past 34,000 yr from Mayotte Reef, Indian Ocean. Quat. Res. 46, 335–339 (1996).

    Article  Google Scholar 

  19. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  20. Bard, E., Hamelin, B. & Fairbanks, R. G. UpTh ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346, 456–458 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Peltier, W. R. Ice age paleotopography. Science 265, 195–201 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Tushingham, A. M. & Peltier, R. W. Ice-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J. Geophys. Res. 96, 4497–4523 (1991).

    Article  ADS  Google Scholar 

  23. Lambeck, K. Limits on the areal extent of the Barents Sea ice sheet in Late Weichselian time. Glob. Planet. Change 12, 41–51 (1996).

    Article  ADS  Google Scholar 

  24. Andrews, J. T. A case of missing water. Nature 358, 281 (1992).

    Article  ADS  Google Scholar 

  25. Zwartz, D., Lambeck, K., Bird, M. & Stone, J. in The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 821–828 (Terra Antarctica, Siena, 1997).

    Google Scholar 

  26. Johnston, P. & Lambeck, K. Automatic inference of ice models from postglacial sea-level observations: Theory and application to the British Isles. J. Geophys. Res. 13179–13194 (2000).

  27. Kleman, J. & Hättestrand, C. Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature 402, 63–66 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Clark, P. U., Alley, R. B. & Pollard, D. Northern hemisphere ice-sheet influences on global climate change. Science 286, 1104–1111 (1999).

    Article  CAS  Google Scholar 

  29. Licciardi, J. M., Clark, P. U., Jenson, J. W. & Macayeal, D. R. Deglaciation of a soft-bedded Laurentide ice sheet. Quat. Sci. Rev. 17, 427–448 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Marshall for providing access to cores collected by the Australian Geological Survey Organisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Lambeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, Y., Lambeck, K., De Deckker, P. et al. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000). https://doi.org/10.1038/35021035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing