Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites

Abstract

Highly correlated electronic systems—such as transition-metal oxides that are doped Mott insulators—are complex systems which exhibit puzzling phenomena, including high-temperature superconductivity and colossal magnetoresistivity. Recent studies1,2,3 suggest that in such systems collective electronic phenomena are important, arising from long-range Coulomb interactions and magnetic effects. The qualitative behaviour of these systems is strongly dependent on charge filling (the level of doping) and the lattice constant. Here we report a time-efficient and systematic experimental approach for studying the phase diagrams of condensed-matter systems. It involves the continuous mapping of the physical properties of epitaxial thin films of perovskite manganites (a class of doped Mott insulator) as their composition is varied. We discover evidence that suggests the presence of phase boundaries of electronic origin at room temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multi-layer deposition and post-annealing synthesis of the CPD, with X-ray diffraction of a fabricated film.
Figure 2: Photo-reflection images of RE1-xAxMnO3 CPDs on NdGaO3 and SrTiO3 substrates, with the temperature-dependent study of Tm1-xCaxMnO3 CPD on SrTiO3.
Figure 3: The microwave response of the Er1-xCaxMnO3 CPD on NdGaO3, and the calibration curve of microwave loss versus d.c. conductivity.

Similar content being viewed by others

References

  1. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550– 553 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  3. Tranquada, J. M. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6-xNd0.4SrxCuO 4. Phys. Rev. Lett. 78, 338– 341 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Birgeneau, R. J. & Shirane, G. in Physical Properties of High Temperature Superconductors Vol. I (ed. Ginsberg, D. M.) 152 (World Scientific, Singapore, 1989).

    Google Scholar 

  5. Schiffer, P., Ramirez, A. P., Bao, W. & Cheong, S.-W. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCa xMnO3. Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B 51, 14103–14109 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y. & Tokura, Y. Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689–R1692 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Sawatzky, E. & Kay, E. Cation deficiencies in r.f. sputtered gadolinium iron garnet films. IBM J. Res. Dev. 13, 696–702 (1969).

    Article  CAS  Google Scholar 

  9. Hanak, J. J. The ‘multiple-sample concept’ in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970).

    Article  ADS  CAS  Google Scholar 

  10. van Dover, R. B., Schneemeyer, L. F. & Fleming, R. M. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392, 162–164 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Lu, Y. et al. Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope. Science 276, 2004–2006 ( 1997).

    Article  CAS  Google Scholar 

  12. Gao, C. & Xiang, X.-D. Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 69, 3846–3851 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Emery, V. J. & Kivelson, S. A. Collective charge transport in high temperature superconductors. Physica C 235–240 , 189–192 (1994).

    Article  ADS  Google Scholar 

  15. Emery, V. J. & Kivelson, S. A. Charge ordering in high-temperature superconductors. Physica C 263, 44– 48 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Salkola, M. I., Emery, V. J. & Kivelson, S. A. Implications of charge ordering for single-particle properties of high-Tc superconductors. Phys. Rev. Lett. 77, 155–158 ( 1996).

    Article  ADS  CAS  Google Scholar 

  17. Zhang, S.-C. A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism. Science 275, 1089–1096 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  18. Wells, B. O. et al. Incommensurate spin fluctuations in high-transition temperature superconductors. Science 277, 1067– 1071 (1997).

    Article  CAS  Google Scholar 

  19. Aeppli, G., Mason, T. E., Hayden, S. M., Mook, H. A. & Kulda, J. Nearly singular magnetic fluctuations in the normal state of a high-Tc cuprate superconductor. Science 278, 1432–1435 ( 1997).

    Article  ADS  CAS  Google Scholar 

  20. Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580– 582 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Moreo, A., Yunoki, S. & Dagotto, E. Phase separation scenario for manganese oxides and related materials. Science 283, 2034– 2040 (1999).

    Article  CAS  Google Scholar 

  22. Kuwahara, H. et al. Striction-coupled magnetoresistance in perovskite-type manganese oxides. Science 272, 80– 82 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Chen, C. H. & Cheong, S-W. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO 3. Phys. Rev. Lett. 76, 4042– 4045 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Chen, C. H., Cheong, S.-W. & Hwang, H. Charge-ordered stripes in La1-xCaxMnO 3 with x > 0.5. J. Appl. Phys. 81, 4326–4330 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Mori, S., Chen, C. H. & Cheong, S.-W. Pairing of charge-ordered stripes in (La,Ca)MnO 3. Nature 392, 473– 476 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Maezono, R., Ishihara, S. & Nagaosa, N. Phase diagram of manganese oxides. Phys. Rev. B 58, 11583–11596 ( 1998).

    Article  ADS  CAS  Google Scholar 

  27. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462– 468 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Yoo, Y.-K. et al. Evidence of strong correlation between doping induced high temperature electronic orders and low temperature magnetic orders in the continuous phase diagram of Nd1-xSrxMnO3. Appl. Phys. Lett. (submitted).

  29. Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 ( 2000).

    Article  ADS  CAS  Google Scholar 

  30. Lide, D. R. CRC Handbook of Chemistry and Physics 79th edn, Ch. 12 (CRC, Cleveland, Ohio, 1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Advanced Energy Projects Division, Office of Computational and Technology Research, US Department of Energy and DARPA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, YK., Duewer, F., Yang, H. et al. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature 406, 704–708 (2000). https://doi.org/10.1038/35021018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing