Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atmospheric carbon dioxide concentrations over the past 60 million years

Abstract

Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sea surface pH for the past 60 Myr.
Figure 2: Sea surface alkalinity for the past 60 Myr.
Figure 3: Record of atmospheric carbon dioxide for the past 60 Myr.
Figure 4: Carbon dioxide levels and Cenozoic climate change.

References

  1. Arrhenius, S. On the influence of carbonic acid in the air upon the temperature on the ground. Phil. Mag. 41, 237–279 (1896).

    CAS  Article  Google Scholar 

  2. Chamberlin, T. C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J. Geol. 7, 545– 584 (1898).

    Article  Google Scholar 

  3. Owen, R. M. & Rea, D. K. Sea floor hydrothermal activity links climate to tectonics—the Eocene carbon dioxide greenhouse. Science 227, 166–169 ( 1985).

    CAS  Article  Google Scholar 

  4. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1993).

    Article  Google Scholar 

  5. Kerrick, D. M. & Caldeira, K. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213 –232 (1998).

    CAS  Article  Google Scholar 

  6. Brady, P. V. The effect of silicate weathering on global temperature and atmospheric CO 2. J. Geophys. Res. 96, 18101– 18106 (1991).

    CAS  Article  Google Scholar 

  7. Worsley, T. R., Moore, T. L., Fraticelli, C. M. & Scotese, C. R. Phanerozoic CO2 levels and global temperatures inferred from changing paleogeography. Geol. Soc. Am. (Special Paper) 288, 57–73 (1994).

    Google Scholar 

  8. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117– 122 (1992).

    CAS  Article  Google Scholar 

  9. Berger, W. H. & Vincent, E. Deep-sea carbonates: reading the carbon-isotope signal. Geologische Rundschau 75, 249–269 (1986).

    CAS  Article  Google Scholar 

  10. McGowran, B. Silica burp in the Eocene ocean. Geology 17, 857–860 (1989).

    CAS  Article  Google Scholar 

  11. Beck, A., Sinha, A., Burbank, D. W., Seacombe, W. J. & Khan, S. in Late Paleocene—Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubry, M-P., Lucas, S. G. & Berggren, W. A.) 103– 117 (Columbia Univ. Press, New York, 1998).

    Google Scholar 

  12. Kakihana, H., Kotaka, M., Satoh, S., Nomura, M. & Okamoto, M. Fundamental studies on the ion exchange separation of boron isotopes. Bull. Chem. Soc. Jpn 50, 158–163 (1977).

    CAS  Article  Google Scholar 

  13. Hemming, N. G. & Hanson, G. N. Boron isotope composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–543 (1992).

    CAS  Article  Google Scholar 

  14. Hemming, N. G., Reeder, R. J. & Hanson, G. N. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Acta 59, 371–379 ( 1995).

    CAS  Article  Google Scholar 

  15. Spivack, A. J., You, C. F. & Smith, H. J. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363, 149–151 (1993).

    CAS  Article  Google Scholar 

  16. Sanyal, A., Hemming, N. G., Hanson, G. N. & Broecker, W. S. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373, 234– 236 (1995).

    CAS  Article  Google Scholar 

  17. Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11, 513–517 ( 1996).

    Article  Google Scholar 

  18. Sanyal, A., Hemming, N. G., Broecker, W. S. & Hanson, G. N. Changes in pH in the eastern equatorial Pacific across Stage 5-6 boundary based on boron isotopes in foraminifera. Glob. Biogeochem. Cycles 11, 125–133 ( 1997).

    CAS  Article  Google Scholar 

  19. Palmer, M. R., Pearson, P. N. & Cobb, S. J. Reconstructing past ocean pH-depth profiles. Science 282, 1468–1471 ( 1998).

    CAS  Article  Google Scholar 

  20. Pearson, P. N. & Palmer, M. R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284, 1824–1826 ( 1999).

    CAS  Article  Google Scholar 

  21. Bralower, T. J. et al. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography 10, 841– 865 (1995).

    Article  Google Scholar 

  22. Pearson, P. N. & Shackleton, N. J. Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. Proc. ODP Sci. Res. 144, 401– 410 (1995).

    Google Scholar 

  23. Israelson, C., Buchardt, B., Haggerty, J. A. & Pearson, P. N. Carbonate and pore water geochemistry of pelagic caps at Limalok and Lo-En guyots, western Pacific. Proc. ODP Sci. Res. 144, 737–743 (1995).

    Google Scholar 

  24. Opdyke, B. N. & Pearson, P. N. Geochemical analysis of multiple planktonic foraminifer species at discrete time intervals. Proc. ODP Sci. Res. 144, 993–995 (1995).

    Google Scholar 

  25. Coxall, H. K., Pearson, P. N., Shackleton, N. J. & Hall, M. A. Hantkeninid depth adaptation: an evolving life-strategy in a changing ocean. Geology 28, 87–90 (2000).

    Article  Google Scholar 

  26. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  27. Zachos, J. C., Lohmann, K. C., Walker, J. C. G & Wise, S. W. Abrupt climate change and transient climates during the Paleogene: a marine perspective. J. Geol. 101, 191– 213 (1993).

    CAS  Article  Google Scholar 

  28. Hemming, N. G., Guilderson, T. P. & Fairbanks, R. G. Seasonal variations in the boron isotopic composition of coral: A productivity signal? Glob. Biogeochem. Cycles 12, 581–586 (1998).

    CAS  Article  Google Scholar 

  29. Jorgensen, B. B. et al. Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady) studied with microelectrodes. Limnol. Oceanogr. 30, 1253–1267 (1985).

    Article  Google Scholar 

  30. Rink, S. et al. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595 (1998).

    Article  Google Scholar 

  31. Millero, F. J. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59, 661–677 (1995).

    CAS  Article  Google Scholar 

  32. Van Andel, T. J. Mesozoic-Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26, 187–194 (1975).

    Article  Google Scholar 

  33. Wanninkhof, R., Lewis, E., Feely, R. A. & Millero, F. J. The optimal carbonate dissociation constants for determining surface water p CO 2 from alkalinity and total inorganic carbon. Mar. Chem. 65, 291–301 ( 1999).

    CAS  Article  Google Scholar 

  34. Kiehl, J. T. & Dickinson, R. E. A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures. J. Geophys. Res. 92, 2991– 2998 (1987).

    CAS  Article  Google Scholar 

  35. Shackleton, N. J. Palaeogene stable isotope events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 57, 91–102 ( 1986).

    CAS  Article  Google Scholar 

  36. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  Google Scholar 

  37. Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic temperatures. Paleoceanography 9, 353–387 (1994).

    Article  Google Scholar 

  38. Frakes, L. A., Francis, J. E. & Syktus, J. I. Climate Modes of the Phanerozoic (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  39. Ritchie, J. D. & Hitchen, K. in Correlation of the Early Paleogene in Northwest Europe (eds Knox, R. W. O., Corfield, R. M. & Dunay, R. E.) 63–78 (Special Publication 101, Geological Society, 1996).

    Google Scholar 

  40. Sloan, L. C. et al. Possible methane-induced polar warming in the early Eocene. Nature 357, 320–322 (1992).

    CAS  Article  Google Scholar 

  41. Dickens, G. R., O'Neill, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  42. Thomas, E., Zachos, J. C. & Bralower, T. S. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. S. & Wing, S. C.). 132–160 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  43. Wing, S. L., Bao, H. & Koch, P. L. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. S. & Wing, S. C.). 197–237 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  44. Paytan, A., Kastner, M., Campbell, D. & Thiemens, M. H. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282, 1459–1462 ( 1998).

    CAS  Article  Google Scholar 

  45. Broecker, W. S. & Sanyal, A. Does atmospheric CO2 police the rate of chemical weathering? Glob. Biogeochem. Cycles 12, 403–408 ( 1998).

    CAS  Article  Google Scholar 

  46. Wright, J. D., Miller, K. G. & Fairbanks, R. G. Early and middle Miocene stable isotopes; Implications for deepwater circulation and climate. Paleoceanography 7, 357–389 (1992).

    Article  Google Scholar 

  47. Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273– 292 (1999).

    Article  Google Scholar 

  48. Crowley, T. J. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. S. & Wing, S. C.). 425–444 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  49. Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. A revised Cenozoic geochronology and chronostratigraphy. 129– 212 (Special Publication 54, Society of Economic Paleontologists and Mineralogists, 1995).

  50. Pearson, P. N. Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands group. Proc. ODP Sci. Res. 144, 21–59 (1995).

    Google Scholar 

Download references

Acknowledgements

The authors contributed equally to this work. Samples were provided by the Ocean Drilling Program. We thank S. Cobb for assistance in sample preparation. This work was supported by the Natural Environment Research Council. P.N.P. is supported by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul N. Pearson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pearson, P., Palmer, M. Atmospheric carbon dioxide concentrations over the past 60 million years . Nature 406, 695–699 (2000). https://doi.org/10.1038/35021000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021000

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing