Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin

Abstract

The transport of protons across membranes is an important process in cellular bioenergetics. The light-driven proton pump bacteriorhodopsin is the best-characterized protein providing this function. Photon energy is absorbed by the chromophore retinal, covalently bound to Lys 216 via a protonated Schiff base. The light-induced all-trans to 13-cis isomerization of the retinal results in deprotonation of the Schiff base followed by alterations in protonatable groups within bacteriorhodopsin. The changed force field induces changes, even in the tertiary structure1,2,3, which are necessary for proton pumping. The recent report4 of a high-resolution X-ray crystal structure for the late M intermediate of a mutant bacteriorhopsin (with Asp 96→Asn) displays the structure of a proton pathway highly disturbed by the mutation. To observe an unperturbed proton pathway, we determined the structure of the late M intermediate of wild-type bacteriorhodopsin (2.25 Å resolution). The cytoplasmic side of our M2 structure shows a water net that allows proton transfer from the proton donor group Asp 96 towards the Schiff base. An enlarged cavity system above Asp 96 is observed, which facilitates the de- and reprotonation of this group by fluctuating water molecules in the last part of the cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image of the proton pathway of the BR model (purple) and the M2-state model (yellow).
Figure 2: Details of the structural differences between the ground state and the M2 intermediate.
Figure 3: Stereo images of the M2-state model of wild-type bacteriorhodopsin.
Figure 4: Comparison of the late M-state models of wild-type bacteriorhodopsin (yellow) with the mutant Asp96→Asn (green; ref.

Similar content being viewed by others

References

  1. Dencher, N. A., Dresselhaus, D., Zaccai, G. & Büldt, G. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Proc. Natl Acad. Sci. USA 86 , 7876–7879 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Koch, M. H. J. et al. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J. 10, 521–526 (1991).

    Article  CAS  Google Scholar 

  3. Subramaniam, S., Gerstein, M., Oesterhelt, D. & Henderson, R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–8 (1993).

    Article  CAS  Google Scholar 

  4. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstom resolution. Science 286, 255–261 (1999).

    Article  CAS  Google Scholar 

  5. Lanyi, J. K. Understanding structure and function in the light-driven proton pump bacteriorhodopsin. J. Struct. Biol. 124, 164– 178 (1998).

    Article  CAS  Google Scholar 

  6. Oesterhelt, D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8, 489 –500 (1998).

    Article  CAS  Google Scholar 

  7. Butt, H. J., Fendler, K., Bamberg, E., Tittor, J. & Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 8, 1657–1663 (1989).

    Article  CAS  Google Scholar 

  8. Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl Acad. Sci. USA 86, 4943–4947 ( 1989).

    Article  ADS  CAS  Google Scholar 

  9. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291 899–911 (1999).

    Article  CAS  Google Scholar 

  10. Edman, K. et al. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Maeda, A., Sasaki, J., Yamazaki, Y., Needleman, R. & Lanyi, J. K. Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. Biochemistry 33, 1713–1717 ( 1994).

    Article  CAS  Google Scholar 

  12. Scharnagl, C. & Fischer, S. F. Conformational flexibility of arginine-82 as source for the heterogeneous and pH-dependent kinetics of the primary proton transfer step in the bacteriorhodopsin photocycle: An electrostatic model. Chem. Phys. 212, 231– 246 (1996).

    Article  CAS  Google Scholar 

  13. Dioumaev, A. K. et al. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry 37, 2496– 2506 (1998).

    Article  CAS  Google Scholar 

  14. Rammelsberg, R., Huhn, G., Lübben, M. & Gerwert, K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001– 5009 (1998).

    Article  CAS  Google Scholar 

  15. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D. & Heberle, J. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc. Natl Acad. Sci. USA 96, 5498– 5503 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Richter, H. T., Brown, L. S., Needleman, R. & Lanyi, J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry 35, 4054–4062 (1996).

    Article  CAS  Google Scholar 

  17. Sass, H. J. et al. The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy. EMBO J. 16, 1484–1491 (1997).

    Article  CAS  Google Scholar 

  18. Sass, H. J. et al. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin. Biophys. J. 75, 399–405 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Xu, D., Sheves, M. & Schulten, K. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin. Biophys. J. 69, 2745– 2760 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Yamazaki, Y., Kandori, H., Needleman, R., Lanyi, J. K. & Maeda, A. Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin. Biochemistry 37, 1559–1564 (1998).

    Article  CAS  Google Scholar 

  21. Weik, M., Zaccai, G., Dencher, N. A., Oesterhelt, D. & Hauss, T. Structure and hydration of the M-state of the bacteriorhodopsin mutant D96N studied by neutron diffraction. J. Mol. Biol. 275, 625–634 (1998).

    Article  CAS  Google Scholar 

  22. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    ADS  CAS  PubMed  Google Scholar 

  23. Zimanyi, L. & Lanyi, J. K. Deriving the intermediate spectra and photocycle kinetics from time- resolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein. Biophys. J. 64, 240–251 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  25. Luecke, H., Richter, H. T. & Lanyi, J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934 –1937 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Genick, U. K. et al. Structure of a protein photocycle intermediate by millisecond time- resolved crystallography. Science 275, 1471–1475 (1997).

    Article  CAS  Google Scholar 

  27. Bhat, T. N. & Cohen, G. H. OMITMAP: An electron density map suitable for the examination of errors in a macromolecular model. J. Appl. Crystallogr. 17, 244–248 (1984).

    Article  CAS  Google Scholar 

  28. Evans, S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134– 138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Landau, J. Rosenbusch, J. Heberle, V. Gordeliy, J. Granzin and J. Labahn for support and discussions, and A. Cousin for preparation of purple membranes. This work was supported by EU-BIOTECH and the Deutsche Forschungsgemeinschaft, Sfb 189 (H.J.S. and G.B.), the US Department of Energy, Office of Health and Enviromental Research (J.B.), and OTKA (P.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Büldt.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sass, H., Büldt, G., Gessenich, R. et al. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653 (2000). https://doi.org/10.1038/35020607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020607

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing