Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water activity as the determinant for homogeneous ice nucleation in aqueous solutions

Abstract

The unique properties of water in the supercooled (metastable) state are not fully understood1. In particular, the effects of solutes and mechanical pressure on the kinetics of the liquid-to-solid phase transition of supercooled water and aqueous solutions to ice have remained unresolved. Here we show from experimental data that the homogeneous nucleation of ice from supercooled aqueous solutions is independent of the nature of the solute, but depends only on the water activity of the solution—that is, the ratio between the water vapour pressures of the solution and of pure water under the same conditions. In addition, we show that the presence of solutes and the application of pressure have a very similar effect on ice nucleation. We present a thermodynamic theory for homogeneous ice nucleation, which expresses the nucleation rate coefficient as a function of water activity and pressure. Recent observations from clouds containing ice are in good agreement with our theory and our results should help to overcome one of the main weaknesses of numerical models of the atmosphere, the formulation of cloud processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental data used in the present analysis.
Figure 2: Variation of the homogeneous ice nucleation rate coefficient J with water activity and temperature.
Figure 3: Ice saturation ratios, Si, for different aerosol radii, r, as a function of temperature.

References

  1. 1

    Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pruppacher, H. R. & Klett, J. D. Microphysics Of Clouds And Precipitation 79–80 & 205–215 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  3. 3

    Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kanno, H., Speedy, R. & Angell, C. A. Supercooling of water to -92 °C under pressure. Science 189, 880– 881 (1975).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Rasmussen, D. H. Thermodynamics and nucleation phenomena - a set of experimental observations. J. Cryst. Growth 56, 56– 66 (1982).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kanno, H. & Angell, C. A. Homogeneous nucleation and glass formation in aqueous alkali halide solutions at high pressures. J. Phys. Chem. 81, 2639–2643 (1977).

    CAS  Article  Google Scholar 

  7. 7

    Leberman, R. & Soper, A. K. Effect of high salt concentrations on water structure. Nature 378, 364– 366 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Rasmussen, D. H. & MacKenzie, A. P. in Water Structure at the Water Polymer Interface (ed. Jellinek, H. H. G.) 126–145 (Plenum, New York, 1972).

    Book  Google Scholar 

  9. 9

    Weast, R. C. (ed.) Handbook Of Chemistry And Physics D139–D178 (Chemical Rubber Company, Cleveland, 1966).

    Google Scholar 

  10. 10

    Baker, M. B. Cloud microphysics and climate. Science 276, 1072–1078 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Murphy, D. M., Thomson, D. S. & Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 ( 1998).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Johari, G. P., Fleissner, G., Hallbrucker, A. & Mayer, E. Thermodynamic continuity between glassy and normal water. J. Phys. Chem. 98, 4719–4725 ( 1994).

    CAS  Article  Google Scholar 

  13. 13

    Gagnon, R. E., Kiefte, H., Clouter, M. J. & Whalley, E. Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy. J. Chem. Phys. 89, 4522– 4528 (1988).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dantl, G. in Physics of Ice (eds Riehl, N., Bullemer, B. & Engelhardt, H.) 223–230 (Plenum, New York, 1969).

    Book  Google Scholar 

  15. 15

    Hare, D. E. & Sorensen, C. M. The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J. Chem. Phys. 87, 4840–4845 (1987).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Speedy, R. J., Debenedetti, P. G., Smith, R. S., Huang, C. & Kay, B. D. The evaporation rate, free energy, and entropy of amorphous water at 150K. J. Chem. Phys. 105, 240–244 (1996).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Koop, T., Ng, H. P., Molina, L. T. & Molina, M. J. A new optical technique to study aerosol phase transitions: the nucleation of ice from H 2SO4 aerosols. J. Phys. Chem. A 102, 8924–8931 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Chang, H. Y. A., Koop, T., Molina, L. T. & Molina, M. J. Phase transitions in emulsified HNO3/H2O and HNO3/H 2SO4/H2O solutions. J. Phys. Chem. A 103, 2673–2679 ( 1999).

    CAS  Article  Google Scholar 

  20. 20

    Koop, T., Bertram, A. K., Molina, L. T. & Molina, M. J. Phase transitions in aqueous NH4HSO4 solutions. J. Phys. Chem. A 103, 9042– 9048 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Bertram, A. K., Koop, T., Molina, L. T. & Molina, M. J. Ice formation in (NH4)2SO4-H2O particles. J. Phys. Chem. A 104, 584– 588 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Angell, C. A., Sare, E. J., Donnella, J. & MacFarlane, D. R. Homogeneous nucleation and glass transition temperatures in solutions of Li salts in D2O and H2O. Doubly unstable glass regions. J. Phys. Chem. 85, 1461– 1464 (1981).

    CAS  Article  Google Scholar 

  23. 23

    Oguni, M. & Angell, C. A. Heat capacities of H2O+H 2O2, and H2O+N2H4, binary solutions: isolation of a singular component for cp of supercooled water. J. Chem. Phys. 73, 1948– 1954 (1980).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Schäfer, K. & Lax, E. (eds) Landoldt-Börnstein, Zahlenwerte und Funktionen Part 2b (Springer, Berlin, 1962).

    Google Scholar 

  25. 25

    Clegg, S. L., Brimblecombe, P. & Wexler, A. S. Thermodynamic model of the system H+-NH+4-SO2-4-NO- 3-H2O at tropospheric temperatures. J. Phys. Chem. A 102, 2137–2154 ( 1998).

    CAS  Article  Google Scholar 

  26. 26

    Krämer, B. Laboruntersuchungen zum Gefrierprozeβ in polaren stratosphärischen Wolken PhD thesis, Free University Berlin (1998 ).

  27. 27

    MacFarlane, D. R., Kadiyala, R. K. & Angell, C. A. Homogeneous nucleation and growth of ice from solutions. TTT curves, the nucleation rate, and the stable glass criterion. J. Chem. Phys. 79, 3921–3927 (1983).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Sassen, K. & Dodd, G. C. Homogeneous nucleation rate for highly supercooled cirrus cloud droplets. J. Atmos. Sci. 45, 1357–1369 (1988).

    ADS  Article  Google Scholar 

  29. 29

    Heymsfield, A. J., Miloshevich, L. M., Twohy, C., Sachse, G. & Oltmans, S. Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation. Geophys. Res. Lett. 25, 1343–1346 (1998).

    ADS  Article  Google Scholar 

  30. 30

    Carslaw, K. S. et al. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785–5796 (1998).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bertram, C. Jeffery, G. Johari, O. Mishima, and H. Vortisch for helpful discussions and for providing us with original data sets. We also thank M. Canagaratna and J. Staehelin for helpful comments on manuscript drafts.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Koop.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koop, T., Luo, B., Tsias, A. et al. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000). https://doi.org/10.1038/35020537

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing