Article | Published:

Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

Nature volume 406, pages 587592 (10 August 2000) | Download Citation

Subjects

Abstract

The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in the extreme conditions of purity, proximity to the ferromagnetic state and very low temperatures required to test the theory definitively. Here we report the observation of superconductivity on the border of ferromagnetism in a pure system, UGe 2, which is known to be qualitatively similar to the classic d-electron ferromagnets. The superconductivity that we observe below 1 K, in a limited pressure range on the border of ferromagnetism, seems to arise from the same electrons that produce band magnetism. In this case, superconductivity is most naturally understood in terms of magnetic as opposed to lattice interactions, and by a spin-triplet rather than the spin-singlet pairing normally associated with nearly antiferromagnetic metals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Theory of superconductivity. Phys. Rev. 108, 1175–1204 ( 1957).

  2. 2.

    , , & Level structure of nuclear matter and liquid 3He. Phys. Rev. 118, 1442–1446 (1960).

  3. 3.

    Paramagnon effect on the BCS transition in 3He. Prog. Theor. Phys. 50, 1101–1109 (1973).

  4. 4.

    , & Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A 10, 2386– 2394 (1974).

  5. 5.

    A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331– 414 (1975).

  6. 6.

    & Strong-coupling theory of superfluid transition temperatures for paramagnon models: application to 3He. Phys. Rev. B 17, 191–200 (1978).

  7. 7.

    & Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

  8. 8.

    Attractive interaction and pairing in fermion systems with strong on-site repulsion. Phys. Rev. Lett. 54, 1317– 1320 (1985).

  9. 9.

    , & Spin-fluctuation mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

  10. 10.

    , , d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190– 8192 (1986).

  11. 11.

    , & Inelastic-scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

  12. 12.

    , & Conserving approximations for strongly correlated electron-systems - Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard-model. Phys. Rev. Lett. 62, 961– 964 (1989).

  13. 13.

    Spin excitations and superconductivity in cuprate oxide and heavy electron superconductors. Physica B 163, 78– 88 (1990).

  14. 14.

    , & Antiferromagnetic spin fluctuations and superconductivity in 2-dimensional metals - a possible model for high-Tc oxides. J. Phys. Soc. Jpn 52, 2905– 2915 (1990).

  15. 15.

    , & Towards a theory of high temperature superconductivity in the antiferromagnetically correlated cuprate oxide. Phys. Rev. Lett. 67, 3448–3451 ( 1991).

  16. 16.

    , , & Knight-shifts and nuclear-spin-relaxation rates for 2-dimensional models of CuO2. Phys. Rev. B 41, 1797– 1811 (1990).

  17. 17.

    , & Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944– 947 (1988).

  18. 18.

    & ρ-wave and d-wave superconductivity in quasi-two-dimensional metals. Phys. Rev. B 59, 14598–14605 (1999).

  19. 19.

    et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43 , 1892–1896 (1979).

  20. 20.

    , , & UBe13—an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).

  21. 21.

    Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

  22. 22.

    et al. Heavy-electron metals: new highly correlated states of matter. Science 239, 33–42 (1988).

  23. 23.

    Organic Conductors (Dekker, New York, 1994).

  24. 24.

    & (eds) Organic Conductors Ch. 3 (Springer, Berlin, 1990).

  25. 25.

    , & Pressure-induced heavy fermion superconductivity of CeCu2Ge2. Phys. Lett. A 163, 475–480 (1992).

  26. 26.

    , , & Magnetic and superconducting phases in CePd2Si2. Physica B 224, 50–52 ( 1996).

  27. 27.

    et al. Superconductivity in heavy-fermion CeRh2Si 2. Phys. Rev. B 53, 8241– 8244 (1996).

  28. 28.

    et al. The normal states of magnetic d and f transition metals. J. Phys. Condens. Matter 8, 9675–9688 (1996).

  29. 29.

    , , & The normal and superconducting states of CeIn3 near the border of antiferromagnetic order. Physica C 282–287 , 303–306 (1997).

  30. 30.

    Electronic phase transition tuned by pressure: superconductivity and antiferromagnetism. Rev. High Pressure Sci. Technol. 7, 465 –468 (1998).

  31. 31.

    et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

  32. 32.

    , & Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3. Nature 398, 47–49 (1999).

  33. 33.

    in Electron (ed. Springford, M.) Ch. 6 (Cambridge Univ. Press, Cambridge, 1997).

  34. 34.

    , , , & Critical behaviour of ZrZn2. Physica B 206 & 207 , 20–22 (1995).

  35. 35.

    , , & Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

  36. 36.

    , & Thermodynamical study under hydrostatic pressure of MnSi. Physica B 239, 67– 70 (1997).

  37. 37.

    et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 ( 1994).

  38. 38.

    An analogue of superfluid 3He. Nature 396, 627–629 (1998).

  39. 39.

    et al. Evidence for incommensurate spin fluctuations in Sr2RuO 4. Phys. Rev. Lett. 83, 3320– 3323 (1999).

  40. 40.

    et al. Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors. IEEE Trans. Appl. Supercond. 9, 1696–1699 (1999).

  41. 41.

    , & Superconductivity in ferromagnetic RuSr2GdCu 2O8. Phys. Rev. Lett. 83, 3713–3716 (1999).

  42. 42.

    , & Magnetism and superconductivity in a transition metal compound: Y4Co3. J. Phys. F 10 , L333–L337 (1980).

  43. 43.

    & Magnetic Superconductors: Recent Developments (Nova Science, New York, 1989).

  44. 44.

    , & Effect of ferromagnetic spin correlations on superconductivity in ferromagnetic metals. Phys. Rev. Lett. 82, 133–136 (1999).

  45. 45.

    , , & Coexistence of superconductivity and ferromagnetism in ferromagnetic metals. Preprint cond-mat/9911489 at 〈http://xxx.lanl.gov〉 ( 1999; cited 30 Nov. 1999).

  46. 46.

    , , & in High Field Magnetism 189 (ed. Date, M.) (North-Holland, Amsterdam, 1983).

  47. 47.

    et al. de Haas-van Alphen effect in UGe2. J. Phys. Soc. Jpn. 61, 1827–1828 (1992).

  48. 48.

    , & Critical electron scattering in UGe2 near the magnetic phase transition induced by pressure. J. Alloys Compounds 271–273, 482–485 (1998).

  49. 49.

    , , & Effect of pressure on the Curie temperature of single-crystal UGe2. J. Alloys Compounds 213, 383–386 (1994).

  50. 50.

    , & Metamagnetic behaviour near the quantum critical point in UGe2. Physica B 284 & 288, 1277–1278 (2000).

  51. 51.

    & Fermi surface of the ferromagnetic heavy-electron compound UGe2. Physica B 186–188, 182–184 ( 1993).

  52. 52.

    Band structure and magnetic fluctuations in ferromagnetic or nearly ferromagnetic metals. J. Magn. Magn. Mater. 45, 43– 53 (1984).

  53. 53.

    Magnetism and superconductivity in heavy fermion metals. Thesis, Univ. Cambridge (2000).

  54. 54.

    , , , & , Crystal structure of UGe2. J. Phys. Soc. Jpn 65, 3229–3232 ( 1996).

  55. 55.

    et al. Crystal and magnetic structure of the uranium digermanide UGe2. J. Alloys Compounds 247, 104–108 (1997).

  56. 56.

    , , & Anisotropy of the upper critical field in TMTSF2 PF6. Phys. Rev. Lett. 78, 3555– 3558 (1997).

  57. 57.

    et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

  58. 58.

    & Relationship between resistivity and specific heat in heavy electron systems. Solid State Commun. 99, 457–460 ( 1996).

  59. 59.

    & Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 ( 1986).

  60. 60.

    & Heavy-fermion quasiparticles in UPt3. Phys. Rev. Lett. 60, 1570–1573 (1988).

  61. 61.

    Nonmagnetic piston-cylinder pressure cell for use at 35 kbar and above. Rev. Sci. Instrum. 70, 3402–3412 (1999).

  62. 62.

    , , & Coexistence of superconductivity and magnetism: theoretical predictions and experimental results. Adv. Phys. 39, 175 (1985).

  63. 63.

    & Quantum critical effects on transition temperature of magnetically mediated p-wave superconducitivity. Preprint cond-mat/0006208 at 〈http:xxx.lanl.gov〉 (2000; cited 26 May 2000).

  64. 64.

    & Nonunitary superconducting state in UPt3. Phys. Rev. Lett. 71, 625–628 (1993).

  65. 65.

    Magnetic and superconducting phases of heavy fermion compounds. Thesis, Univ. Cambridge (1998).

Download references

Acknowledgements

We thank in particular S. V. Brown and also F. Beckers, K. S. Bedell, K. B. Blageov, D. M. Broun, P. Coleman, D. Forsythe, C. D. Frost, D. E. Khmelnitskii, P. B. Littlewood, A. J. Millis, P. Niklowitz, T. T. M. Palstra, D. Pines, C. Pfleiderer, K. Sandeman, A. J. Schofield and A. Tsvelik for discussions. The work was supported in part by the Cambridge Research Centre in Superconductivity, the UK EPSRC, the Paul Instrument Fund of the Royal Society, the Cambridge Newton Trust and the Commonwealth Scholarship Commission. The work performed in Grenoble was supported by the CEA Direction des Sciences de la Matière.

Author information

Author notes

    • S. S. Saxena
    •  & F. M. Grosche

    Present address: MPI Chemische Physik fester Stoffe, Bayreuther Str. 40, 01189 Dresden, Germany (F.M.G.); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK (S.S.S.).

Affiliations

  1. *Department of Physics, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK

    • S. S. Saxena
    • , P. Agarwal
    • , K. Ahilan
    • , F. M. Grosche
    • , R. K. W. Haselwimmer
    • , M. J. Steiner
    • , E. Pugh
    • , I. R. Walker
    • , S. R. Julian
    • , P. Monthoux
    •  & G. G. Lonzarich
  2. †Materials Science Centre, University of Groningen, Nigenborgh 4, 9747AG, The Netherlands

    • S. S. Saxena
  3. §Département de Recherche Fondamentale sur la Matière condensée - SPSMS, CEA Grenoble, 17 Av. des Martyrs, Grenoble 38054, France

    • A. Huxley
    • , I. Sheikin
    • , D. Braithwaite
    •  & J. Flouquet

Authors

  1. Search for S. S. Saxena in:

  2. Search for P. Agarwal in:

  3. Search for K. Ahilan in:

  4. Search for F. M. Grosche in:

  5. Search for R. K. W. Haselwimmer in:

  6. Search for M. J. Steiner in:

  7. Search for E. Pugh in:

  8. Search for I. R. Walker in:

  9. Search for S. R. Julian in:

  10. Search for P. Monthoux in:

  11. Search for G. G. Lonzarich in:

  12. Search for A. Huxley in:

  13. Search for I. Sheikin in:

  14. Search for D. Braithwaite in:

  15. Search for J. Flouquet in:

Corresponding author

Correspondence to G. G. Lonzarich.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35020500

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.