Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

Abstract

The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in the extreme conditions of purity, proximity to the ferromagnetic state and very low temperatures required to test the theory definitively. Here we report the observation of superconductivity on the border of ferromagnetism in a pure system, UGe 2, which is known to be qualitatively similar to the classic d-electron ferromagnets. The superconductivity that we observe below 1 K, in a limited pressure range on the border of ferromagnetism, seems to arise from the same electrons that produce band magnetism. In this case, superconductivity is most naturally understood in terms of magnetic as opposed to lattice interactions, and by a spin-triplet rather than the spin-singlet pairing normally associated with nearly antiferromagnetic metals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The magnetization and inverse magnetic susceptibility of UGe2.
Figure 2: The temperature–pressure phase diagram of UGe2.
Figure 3: The a.c. susceptibility χ of UGe2 at high pressure.
Figure 4: The resistivity ρ of UGe2 at high pressure.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 ( 1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Brueckner, K. A., Soda, T., Anderson, P. W. & Morel, P. Level structure of nuclear matter and liquid 3He. Phys. Rev. 118, 1442–1446 (1960).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Nakajima, S. Paramagnon effect on the BCS transition in 3He. Prog. Theor. Phys. 50, 1101–1109 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Brinkman, W. F., Serene, J. W. & Anderson, P. W. Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A 10, 2386– 2394 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331– 414 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Levin, R. & Valls, O. T. Strong-coupling theory of superfluid transition temperatures for paramagnon models: application to 3He. Phys. Rev. B 17, 191–200 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Fey, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

    Article  ADS  Google Scholar 

  8. Hirsch, J. E. Attractive interaction and pairing in fermion systems with strong on-site repulsion. Phys. Rev. Lett. 54, 1317– 1320 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Scalapino, D. J., Loh, E. Jr, Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190– 8192 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Millis, A. J., Sachdev, S. & Varma, C. M. Inelastic-scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Bickers, N. E., Scalapino, D. J. & White, S. R. Conserving approximations for strongly correlated electron-systems - Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard-model. Phys. Rev. Lett. 62, 961– 964 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Pines, D. Spin excitations and superconductivity in cuprate oxide and heavy electron superconductors. Physica B 163, 78– 88 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Moriya, T., Takahashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in 2-dimensional metals - a possible model for high-Tc oxides. J. Phys. Soc. Jpn 52, 2905– 2915 (1990).

    Article  ADS  Google Scholar 

  15. Monthoux, P., Balatsky, A. V. & Pines, D. Towards a theory of high temperature superconductivity in the antiferromagnetically correlated cuprate oxide. Phys. Rev. Lett. 67, 3448–3451 ( 1991).

    Article  ADS  CAS  Google Scholar 

  16. Bulut, N., Hone, D. W., Scalapino, D. J. & Bickers, N. E. Knight-shifts and nuclear-spin-relaxation rates for 2-dimensional models of CuO2. Phys. Rev. B 41, 1797– 1811 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Schrieffer, J. R., Wen, X. G. & Zhang, S. C. Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944– 947 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Monthoux, P. & Lonzarich, G. G. ρ-wave and d-wave superconductivity in quasi-two-dimensional metals. Phys. Rev. B 59, 14598–14605 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43 , 1892–1896 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13—an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Fisk, Z. et al. Heavy-electron metals: new highly correlated states of matter. Science 239, 33–42 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Jerome, D. Organic Conductors (Dekker, New York, 1994).

    Google Scholar 

  24. Ishiguro, T. & Yamaji, K. (eds) Organic Conductors Ch. 3 (Springer, Berlin, 1990).

    Book  Google Scholar 

  25. Jaccard, D., Behnia, K. & Sierro, J. Pressure-induced heavy fermion superconductivity of CeCu2Ge2. Phys. Lett. A 163, 475–480 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Grosche, F. M., Julian, S. R., Mathur, N. D. & Lonzarich, G. G. Magnetic and superconducting phases in CePd2Si2. Physica B 224, 50–52 ( 1996).

    Article  ADS  Google Scholar 

  27. Movshovich, R. et al. Superconductivity in heavy-fermion CeRh2Si 2. Phys. Rev. B 53, 8241– 8244 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Julian, S. R. et al. The normal states of magnetic d and f transition metals. J. Phys. Condens. Matter 8, 9675–9688 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Walker, I. R., Grosche, F. M., Freye, D. M. & Lonzarich, G. G. The normal and superconducting states of CeIn3 near the border of antiferromagnetic order. Physica C 282–287 , 303–306 (1997).

    Article  ADS  Google Scholar 

  30. Fukuyama, H. Electronic phase transition tuned by pressure: superconductivity and antiferromagnetism. Rev. High Pressure Sci. Technol. 7, 465 –468 (1998).

    Article  CAS  Google Scholar 

  31. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  CAS  Google Scholar 

  32. Jourdan, M., Huth, M. & Adrian, H. Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3. Nature 398, 47–49 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Lonzarich, G. G. in Electron (ed. Springford, M.) Ch. 6 (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  34. Grosche, F. M., Pfleiderer, C., McMullan, G. J., Lonzarich, G. G. & Bernhoeft, N. R. Critical behaviour of ZrZn2. Physica B 206 & 207 , 20–22 (1995).

    Article  CAS  Google Scholar 

  35. Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Thessieu, C., Pfleiderer, C. & Flouquet, J. Thermodynamical study under hydrostatic pressure of MnSi. Physica B 239, 67– 70 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 ( 1994).

    Article  ADS  CAS  Google Scholar 

  38. Rice, T. M. An analogue of superfluid 3He. Nature 396, 627–629 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Sidis, Y. et al. Evidence for incommensurate spin fluctuations in Sr2RuO 4. Phys. Rev. Lett. 83, 3320– 3323 (1999).

    Article  ADS  CAS  Google Scholar 

  40. Tallon, J. et al. Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors. IEEE Trans. Appl. Supercond. 9, 1696–1699 (1999).

    Article  ADS  Google Scholar 

  41. Pickett, W. E., Weht, R. & Shick, A. B. Superconductivity in ferromagnetic RuSr2GdCu 2O8. Phys. Rev. Lett. 83, 3713–3716 (1999).

    Article  ADS  CAS  Google Scholar 

  42. Kolodziejczyk, A., Sarkissian, B. V. B. & Coles, B. R. Magnetism and superconductivity in a transition metal compound: Y4Co3. J. Phys. F 10 , L333–L337 (1980).

    Article  ADS  CAS  Google Scholar 

  43. Sinham K. P. & Kakani, S. L. Magnetic Superconductors: Recent Developments (Nova Science, New York, 1989).

    Google Scholar 

  44. Blagoev, K. B., Engelbrecht, J. R. & Bedell, K. S. Effect of ferromagnetic spin correlations on superconductivity in ferromagnetic metals. Phys. Rev. Lett. 82, 133–136 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Krachev, N. I., Blagoev, K. B., Bedell, K. S. & Littlewood, P. B. Coexistence of superconductivity and ferromagnetism in ferromagnetic metals. Preprint cond-mat/9911489 at 〈http://xxx.lanl.gov〉 ( 1999; cited 30 Nov. 1999).

  46. Menovsky, A., de Boer, F. R., Frings, P. H. & Franse, J. J. M. in High Field Magnetism 189 (ed. Date, M.) (North-Holland, Amsterdam, 1983).

    Book  Google Scholar 

  47. Satoh, K. et al. de Haas-van Alphen effect in UGe2. J. Phys. Soc. Jpn. 61, 1827–1828 (1992).

    Article  ADS  CAS  Google Scholar 

  48. Oomi, G., Kagayama, T. & Onuki, Y. Critical electron scattering in UGe2 near the magnetic phase transition induced by pressure. J. Alloys Compounds 271–273, 482–485 (1998).

    Article  Google Scholar 

  49. Nishimura, K., Oomi, G., Yun, S. W. & Onuki, Y. Effect of pressure on the Curie temperature of single-crystal UGe2. J. Alloys Compounds 213, 383–386 (1994).

    Article  ADS  Google Scholar 

  50. Huxley, A., Sheikin, I. & Braithwaite, D. Metamagnetic behaviour near the quantum critical point in UGe2. Physica B 284 & 288, 1277–1278 (2000).

    Article  Google Scholar 

  51. Yamagami, H. & Hasegawa, A. Fermi surface of the ferromagnetic heavy-electron compound UGe2. Physica B 186–188, 182–184 ( 1993).

    Article  ADS  Google Scholar 

  52. Lonzarich, G. G. Band structure and magnetic fluctuations in ferromagnetic or nearly ferromagnetic metals. J. Magn. Magn. Mater. 45, 43– 53 (1984).

    Article  ADS  CAS  Google Scholar 

  53. Agarwal, P. Magnetism and superconductivity in heavy fermion metals. Thesis, Univ. Cambridge (2000).

  54. Oikawa, K., Kamiyama, T., Asano, H., Onuki, Y. & Kohgi, M., Crystal structure of UGe2. J. Phys. Soc. Jpn 65, 3229–3232 ( 1996).

    Article  ADS  CAS  Google Scholar 

  55. Boulet, P. et al. Crystal and magnetic structure of the uranium digermanide UGe2. J. Alloys Compounds 247, 104–108 (1997).

    Article  CAS  Google Scholar 

  56. Lee, I. J., Naughton, M. J., Danner, G. M. & Chaikin, P. M. Anisotropy of the upper critical field in TMTSF2 PF6. Phys. Rev. Lett. 78, 3555– 3558 (1997).

    Article  ADS  CAS  Google Scholar 

  57. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    Article  ADS  CAS  Google Scholar 

  58. Takimoto, T. & Moriya, T. Relationship between resistivity and specific heat in heavy electron systems. Solid State Commun. 99, 457–460 ( 1996).

    Article  ADS  CAS  Google Scholar 

  59. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 ( 1986).

    Article  ADS  CAS  Google Scholar 

  60. Taillefer, L. & Lonzarich, G. G. Heavy-fermion quasiparticles in UPt3. Phys. Rev. Lett. 60, 1570–1573 (1988).

    Article  ADS  CAS  Google Scholar 

  61. Walker, I. R. Nonmagnetic piston-cylinder pressure cell for use at 35 kbar and above. Rev. Sci. Instrum. 70, 3402–3412 (1999).

    Article  ADS  CAS  Google Scholar 

  62. Bulaevskii, L. N., Buzdin, A. I., Panjukov, S. V. & Kulic, M. L. Coexistence of superconductivity and magnetism: theoretical predictions and experimental results. Adv. Phys. 39, 175 (1985).

    Article  ADS  Google Scholar 

  63. Roussev, R. & Millis, A. J. Quantum critical effects on transition temperature of magnetically mediated p-wave superconducitivity. Preprint cond-mat/0006208 at 〈http:xxx.lanl.gov〉 (2000; cited 26 May 2000).

  64. Ohmi, T. & Machida, K. Nonunitary superconducting state in UPt3. Phys. Rev. Lett. 71, 625–628 (1993).

    Article  ADS  CAS  Google Scholar 

  65. Saxena, S. S. Magnetic and superconducting phases of heavy fermion compounds. Thesis, Univ. Cambridge (1998).

Download references

Acknowledgements

We thank in particular S. V. Brown and also F. Beckers, K. S. Bedell, K. B. Blageov, D. M. Broun, P. Coleman, D. Forsythe, C. D. Frost, D. E. Khmelnitskii, P. B. Littlewood, A. J. Millis, P. Niklowitz, T. T. M. Palstra, D. Pines, C. Pfleiderer, K. Sandeman, A. J. Schofield and A. Tsvelik for discussions. The work was supported in part by the Cambridge Research Centre in Superconductivity, the UK EPSRC, the Paul Instrument Fund of the Royal Society, the Cambridge Newton Trust and the Commonwealth Scholarship Commission. The work performed in Grenoble was supported by the CEA Direction des Sciences de la Matière.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Lonzarich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, S., Agarwal, P., Ahilan, K. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature 406, 587–592 (2000). https://doi.org/10.1038/35020500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing