Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Error and attack tolerance of complex networks

A Corrigendum to this article was published on 25 January 2001


Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network1. Complex communication networks2 display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web3,4,5, the Internet6, social networks7 and cells8. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Visual illustration of the difference between an exponential and a scale-free network.
Figure 2: Changes in the diameter d of the network as a function of the fraction f of the removed nodes.
Figure 3: Network fragmentation under random failures and attacks.
Figure 4: Summary of the response of a network to failures or attacks.


  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, 47–52 (1999).

    Article  Google Scholar 

  2. Claffy, K., Monk, T. E. et al. Internet tomography. Nature Web Matters [online] (7 Jan. 99) 〈〉 (1999).

  3. Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the World-Wide Web. Nature 401, 130–131 ( 1999).

    ADS  CAS  Article  Google Scholar 

  4. Kumar, R., Raghavan, P., Rajalopagan, S. & Tomkins, A. in Proc. 9th ACM Symp. on Principles of Database Systems 1–10 (Association for Computing Machinery, New York, 2000).

    Google Scholar 

  5. Huberman, B. A. & Adamic, L. A. Growth dynamics of the World-Wide Web. Nature 401, 131 (1999).

    ADS  CAS  Article  Google Scholar 

  6. Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet topology, ACM SIGCOMM '99. Comput. Commun. Rev. 29, 251–263 (1999).

    Article  Google Scholar 

  7. Wasserman, S. & Faust, K. Social Network Analysis (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  8. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature (in the press).

  9. Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1960).

    MathSciNet  MATH  Google Scholar 

  10. Bollobás, B. Random Graphs (Academic, London, 1985).

    MATH  Google Scholar 

  11. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440– 442 (1998).

    ADS  CAS  Article  Google Scholar 

  12. Zegura, E. W., Calvert, K. L. & Donahoo, M. J. A quantitative comparison of graph-based models for internet topology. IEEE/ACM Trans. Network. 5, 770–787 (1997).

    Article  Google Scholar 

  13. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180 –183 (2000).

    ADS  CAS  Article  Google Scholar 

  14. Maritan, A., Colaiori, F., Flammini, A., Cieplak, M. & Banavar, J. Universality classes of optimal channel networks. Science 272, 984– 986 (1996).

    ADS  CAS  Article  Google Scholar 

  15. Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).

    ADS  CAS  Article  Google Scholar 

  16. Barthélémy, M. & Amaral, L. A. N. Small-world networks: evidence for a crossover picture. Phys. Rev. Lett. 82, 3180–3183 ( 1999).

    ADS  Article  Google Scholar 

  17. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509– 511 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  18. Barabási, A.-L., Albert, R. & Jeong, H. Mean-field theory for scale-free random networks. Physica A 272, 173–187 ( 1999).

    ADS  Article  Google Scholar 

  19. Redner, S. How popular is your paper? An empirical study of the citation distribution. Euro. Phys. J. B 4, 131– 134 (1998).

    ADS  CAS  Article  Google Scholar 

  20. Lawrence, S. & Giles, C. L. Accessibility of information on the web. Nature 400, 107– 109 (1999).

    ADS  CAS  Article  Google Scholar 

  21. Milgram, S. The small-world problem. Psychol. Today 2, 60–67 (1967).

    Google Scholar 

  22. Bunde, A. & Havlin, S. (eds) Fractals and Disordered Systems (Springer, New York, 1996).

    Book  Google Scholar 

  23. Paxson, V. End-to-end routing behavior in the internet. IEEE/ACM Trans. Network. 5, 601–618 ( 1997).

    Article  Google Scholar 

  24. Adamic, L. A. The small world web. Lect. Notes Comput. Sci. 1696, 443–452 (1999).

    Article  Google Scholar 

Download references


We thank B. Bunker, K. Newman, Z. N. Oltvai and P. Schiffer for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Albert-László Barabási.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Albert, R., Jeong, H. & Barabási, AL. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing