Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterizing the nonlinear growth of large-scale structure in the Universe

Abstract

The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters1,2. The early Universe, however, was almost smooth, with only slight ‘ripples’, as seen in the cosmic microwave background radiation3. Models of the evolution of cosmic structure link these observations through the effect of gravity, because the small initially overdense fluctuations are predicted to attract additional mass as the Universe expands4. During the early stages of this expansion, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with each other in nonlinear ways, more like waves breaking in shallow water. We have recently shown5 how cosmic structure can be characterized by phase correlations associated with these nonlinear interactions, but it was not clear how to use that information to obtain quantitative insights into the growth of structures. Here we report a method of revealing phase information, and show quantitatively how this relates to the formation of filaments, sheets and clusters of galaxies by nonlinear collapse. We develop a statistical method based on information entropy to separate linear from nonlinear effects, and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The importance of phase coupling.
Figure 2: The representation of colour hue on a circle.
Figure 3: The evolution of phase coupling.

References

  1. 1

    Saunders, W. et al. The density field of the local Universe. Nature 349, 32–38 ( 1991).

    ADS  Article  Google Scholar 

  2. 2

    Shectman, S. et al. The Las Campanas redshift survey. Astrophys. J. 470, 172–188 ( 1996).

    ADS  Article  Google Scholar 

  3. 3

    Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1– L4 (1992).

    ADS  Article  Google Scholar 

  4. 4

    Peebles, P. J. E. The Large-scale Structure of the Universe (Princeton Univ. Press, Princeton, 1980).

    Google Scholar 

  5. 5

    Chiang, L.-Y. & Coles, P. Phase information and the evolution of cosmological density perturbations. Mon. Not R. Astron. Soc. 311, 809–824 ( 2000).

    ADS  Article  Google Scholar 

  6. 6

    Guth, A. H. & Pi, S.-Y. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110– 1113 (1982).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields. Astrophys. J. 304 , 15–61 (1986).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Oppenheim, A. V. & Lim, J. S. The importance of phase in signals. Proc. IEEE 69, 529– 541 (1981).

    ADS  Article  Google Scholar 

  9. 9

    Ryden, B. S. & Gramann, M. Phase shifts in gravitationally evolving density fields. Astrophys. J. 383, L33–L36 (1991).

    ADS  Article  Google Scholar 

  10. 10

    Scherrer, R. J., Melott, A. L. & Shandarin, S. F. A quantitative measure of phase correlations in density fields. Astrophys. J. 377, 29– 35 (1991).

    ADS  Article  Google Scholar 

  11. 11

    Soda, J. & Suto, Y. Nonlinear gravitational evolution of phases and amplitudes in one-dimensional cosmological density fields. Astrophys. J. 396, 379–394 (1992).

    ADS  Article  Google Scholar 

  12. 12

    Jain, B. & Bertschinger, E. Self-similar evolution of gravitational clustering: is n = 1 special? Astrophys. J. 456, 43–54 (1996).

    ADS  Article  Google Scholar 

  13. 13

    Jain, B. & Bertschinger, E. Self-similar evolution of gravitational clustering: N-body simulations of the n = -2 spectrum. Astrophys. J. 509, 517–530 (1998).

    ADS  Article  Google Scholar 

  14. 14

    Thornton, A. L. Colour Object Recognition Using a Complex Colour Representation and the Frequency Domain. Thesis, Univ. Reading (1998).

    Google Scholar 

  15. 15

    Shandarin, S. F. & Zel'dovich, Ya. B. The large-scale structure: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185– 220 (1989).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  16. 16

    Polygiannikis, J. M. & Moussas, X. Detection of nonlinear dynamics in solar wind and a comet using phase-correlation measures. Sol. Phys. 158, 159–172 (1995).

    ADS  Article  Google Scholar 

  17. 17

    Ferreira, P. G., Magueijo, J. & Górski, K. M. Evidence for non-Gaussianity in the COBE DMR 4-year sky maps. Astrophys. J. 503, L1– L4 (1998).

    ADS  Article  Google Scholar 

  18. 18

    Pando, J., Valls-Gabaud, D. & Fang, L. Evidence for scale-scale correlations in the cosmic microwave background radiation. Phys. Rev. Lett. 81 , 4568–4571 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Bromley, B. C. & Tegmark, M. Is the cosmic microwave background really non-gaussian? Astrophys. J. 524, L79–L82 (1999).

    ADS  Article  Google Scholar 

  20. 20

    Matarrese, S., Verde, L. & Heavens, A. F. Large-scale bias in the universe: bispectrum method. Mon. Not. R. Astron. Soc. 290, 651– 662 (1997).

    ADS  Article  Google Scholar 

  21. 21

    Scoccimarro, R., Couchman, H. M. P. & Frieman, J. A. The bispectrum as a signature of gravitational instability in redshift space. Astrophys. J. 517, 531 –540 (1999).

    ADS  Article  Google Scholar 

  22. 22

    Verde, L., Wang, L., Heavens, A. F. & Kamionkowski, M. Large-scale structure, the cosmic microwave background, and primordial non-Gaussianity. Mon. Not. R. Astron. Soc. 313, 141– 147 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Stirling, A. J. & Peacock, J. A. Power correlations in cosmology: Limits on primordial non-Gaussian density fields. Mon. Not. R. Astron. Soc. 283, L99– L104 (1996).

    ADS  Article  Google Scholar 

  24. 24

    Foley, J. D. & Van Dam, A. Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, Massachusetts, 1982 ).

    Google Scholar 

  25. 25

    Melott, A. L. & Shandarin, S. F. Generation of large-scale cosmological structures by gravitational clustering. Nature 346, 633–635 (1990).

    ADS  Article  Google Scholar 

  26. 26

    Beacom, J. F., Dominik, K. G., Melott, A. L., Perkins, S. P. & Shandarin, S. F. Gravitational clustering in the expanding Universe—controlled high resolution studies in two dimensions. Astrophys. J. 372, 351– 363 (1991).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Coles.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coles, P., Chiang, LY. Characterizing the nonlinear growth of large-scale structure in the Universe . Nature 406, 376–378 (2000). https://doi.org/10.1038/35019009

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing