β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect

Abstract

Insect antifreeze proteins (AFP) are considerably more active at inhibiting ice crystal growth than AFP from fish or plants. Several insect AFPs, also known as thermal hysteresis proteins, have been cloned1,2,3 and expressed1,2. Their maximum activity is 3–4 times that of fish AFPs1 and they are 10–100 times more effective at micromolar concentrations. Here we report the solution structure of spruce budworm (Choristoneura fumiferana) AFP and characterize its ice-binding properties. The 9-kDa AFP is a β-helix with a triangular cross-section and rectangular sides that form stacked parallel β-sheets; a fold which is distinct from the three known fish AFP structures. The ice-binding side contains 9 of the 14 surface-accessible threonines organized in a regular array of TXT motifs that match the ice lattice on both prism and basal planes. In support of this model, ice crystal morphology and ice-etching experiments are consistent with AFP binding to both of these planes and thus may explain the greater activity of the spruce budworm antifreeze.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hyperactivity of insect antifreeze protein compared to a fish antifreeze protein.
Figure 2: Structure of spruce budworm antifreeze protein.
Figure 3: Ice hemispheres and an ice crystal grown in the presence of slow AFP.
Figure 4: SbwAFP model showing surface complementarity with the prism and basal planes of ice.

References

  1. 1

    Tyshenko, M. G., Doucet, D., Davies, P. L. & Walker, V. K. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nature Biotechnol. 15, 887– 890 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Graham, L. A., Liou, Y. C., Walker, V. K. & Davies, P. L. Hyperactive antifreeze protein from beetles. Nature 388, 727–728 (1997).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Duman, J. G. et al. Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J. Comp. Physiol. B 168, 225–232 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Beaman, T. W., Sugantino, M. & Roderick, S. L. Structure of the hexapeptide xenobiotic acetyltransferase from pseudomonas aeruginosa. Biochemistry 37, 6689–6696 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Kisker, C., Schindelin, H., Alber, B. E., Ferry, J. G. & Rees, D. C. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. Embo J. 15, 2323– 2330 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Liou, Y. -C., Tocilj, A., Davies, P. L. & Jia, Z. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406, 322– 324 (2000).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sicheri, F. & Yang, D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427–431 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Sönnichsen, F. D., DeLuca, C. I., Davies, P. L. & Sykes, B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4, 1325–1337 ( 1996).

    Article  Google Scholar 

  9. 9

    Jia, Z., DeLuca, C. I., Chao, H. & Davies, P. L. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384, 285–288 ( 1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Knight, C. A., Cheng, C. C. & DeVries, A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59 , 409–418 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Deng, G., Andrews, D. W. & Laursen, R. A. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 402, 17–20 ( 1997).

    CAS  Article  Google Scholar 

  12. 12

    Wen, D. & Laursen, R. A. A model for binding of an antifreeze polypeptide to ice. Biophys. J. 63, 1659 –1662 (1992).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Knight, C. A., Driggers, E. & DeVries, A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys. J. 64, 252– 259 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Haymet, A. D., Ward, L. G., Harding, M. M. & Knight, C. A. Valine substituted winter flounder ‘antifreeze’: preservation of ice growth hysteresis. FEBS Lett. 430, 301–306 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, W. & Laursen, R. A. Structure-function relationships in a type I antifreeze polypeptide—The role of threonine methyl and hydroxyl groups in antifreeze activity. J. Biol. Chem. 273, 34806–34812 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Chao, H. M. et al. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 36, 14652– 14660 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Graether, S. P. et al. Quantitative and qualitative analysis of type III antifreeze protein structure and function. J. Biol. Chem. 274, 11842–11847 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Chou, K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J. Mol. Biol. 223, 509– 517 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Gauthier, S. Y., Kay, C. M., Sykes, B. D., Walker, V. K. & Davies, P. L. Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. Eur. J. Biochem. 258, 445–453 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX Pipes. J. Biolmol. NMR 6, 277– 293 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Brünger, A. T. X-PLOR Manual Version 3.1. A system for X-ray crystallography and NMR. (Yale Univ. Press, New Haven, Connecticut, 1992).

    Google Scholar 

  22. 22

    Kuszewski, J., Qin, J., Gronenborn, A. M. & Clore, G. M. The impact of direct refinement against 13C alpha and 13C beta chemical shifts on protein structure determination by NMR. J. Magn. Reson. B 106, 92– 96 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Willard, L., Wishart, D. S. & Sykes, B. D. VADAR Version 1.2 (Univ. Alberta, Edmonton, Alberta, Canada, 1997).

    Google Scholar 

  24. 24

    Laskowski, R. A., MacArthuer, M. W., Moss, D. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283– 291 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946– 950 (1991).

    Article  Google Scholar 

  26. 26

    Merrit, E. A. & Murphy, M. E. P. A program for photorealistic molecular graphics. Raster3D Version 2. 0. Acta Cryst. D 50, 869–873 (1994).

    Article  Google Scholar 

  27. 27

    SYBYL Molecular modelling package. Version 6. 5 (Tripos Software, St. Louis, Missouri, 1998).

Download references

Acknowledgements

We thank S. Gauthier and D. Doucet for help with the mutagenesis, and L. Saltibus and G. McQuaid for their excellent technical assistance. Special thanks to L. Spyracopoulos for helping in the analysis of the NMR data and structures. We thank Dan Garrett and the Laboratory of Chemical Physics at the National Institutes of Health for making available the program PIPP that was used in analysing our NMR data. This work was supported by MRC grants to P.L.D,B.D.S and Z.J. and an NSERC grant to V.K.W.; Z.J. is an MRC Scholar and P.L.D. is a Killam Research Fellow.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter L. Davies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graether, S., Kuiper, M., Gagné, S. et al. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406, 325–328 (2000). https://doi.org/10.1038/35018610

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing