Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anomalous 17O compositions in massive sulphate deposits on the Earth

Abstract

The variation of δ18O that results from nearly all physical, biological and chemical processes on the Earth is approximately twice as large as the variation of δ17O. This so-called ‘mass-dependent’ fractionation is well documented in terrestrial minerals1,2. Evidence for ‘mass-independent’ fractionation (Δ17O = δ17O - 0.52δ18O), where deviation from this tight relationship occurs, has so far been found only in meteoritic material and a few terrestrial atmospheric substances3. In the rock record it is thought that oxygen isotopes have followed a mass-dependent relationship for at least the past 3.7 billion years (ref. 4), and no exception to this has been encountered for terrestrial solids5. Here, however, we report oxygen-isotope values of two massive sulphate mineral deposits, which formed in surface environments on the Earth but show large isotopic anomalies (Δ17O up to 4.6‰). These massive sulphate deposits are gypcretes from the central Namib Desert and the sulphate-bearing Miocene volcanic ash-beds in North America. The source of this isotope anomaly might be related to sulphur oxidation reactions in the atmosphere and therefore enable tracing of such oxidation. These findings also support the possibility of a chemical origin of variable isotope anomalies on other planets, such as Mars6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ17O versus δ18O for various sulphates.

Similar content being viewed by others

References

  1. Clayton, R. N., Grossman, L. & Mayeda, T. K. A component of primitive nuclear composition in carbonaceous chondrites. Science 182, 485– 488 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Matsuhisa, Y., Goldsmith, J. R. & Clayton, R. N. Mechanisms of hydrothermal crystallization of quartz at 250 degrees C and 15 kilobars. Geochim. Cosmochim. Acta 42, 173–182 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Thiemens, M. H. Atmosphere science—Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Robert, F., Rejou-Michel, A. & Javoy, M. Oxygen isotropic homogeneity of the Earth: new evidence. Earth Planet. Sci. Lett. 108, 1– 9 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999– 2017 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Farquhar, J., Thiemens, M. H. & Jackson, T. Atmosphere-surface interactions on Mars: Delta O-17 measurements of carbonate from ALH 84001. Science 280 , 1580–1582 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Mauersberger, K. Ozone isotope measurements in the stratosphere. Geophys. Res. Lett. 14, 80–83 ( 1987).

    Article  ADS  CAS  Google Scholar 

  8. Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K. & Schellenbach, K. Measurement of heavy isotope enrichment in tropospheric ozone. Geophys. Res. Lett. 22, 1713–1716 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Johnston, J. C. & Thiemens, M. H. The isotopic composition of tropospheric ozone in three environments. J. Geophys. Res. 102 (D21), 25395–25404 (1997).

    Article  ADS  Google Scholar 

  10. Savarino, J. & Thiemens, M. H. Analytical procedure to determine both delta O-18 and delta O-17 of H2O2 in natural water and first measurements. Atmos. Environ. 33, 3683–3690 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Lee, C. W. Multiple stable oxygen isotopic studies of atmospheric sulfate aerosols. Am. Geophys. Union 78, F111 ( 1997).

    Article  Google Scholar 

  12. Lee, C. W., Savarino, J. & Thiemens, M. H. Multiple stable oxygen isotopic studies of sulfate and hydrogen peroxide collected from rain water: a new way to investigate in-situ S(IV) oxidation chemistry by dissolved H2O2 in aqueous solution. Am. Geophys. Union 79, F91 (1998).

    Article  Google Scholar 

  13. Eckardt, F. D. & Spiro, B. The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia. Sedim. Geol. 123, 255–273 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Siesser, W. G. Late Miocene origin of the Benguela upwelling system off northern Namibia. Science 208, 283–285 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Armstrong, R. L. & Ward, P. L. Evolving geographic patterns of Cenozoic magmatism in the North American Cordillera; the temporal and spatial association of magmatism and metamorphic core complexes Mid-Tertiary Cordilleran magmatism; plate convergence versus intraplate processes. J. Geophys. Res. B 96, 13201–13224 (1991).

    Article  ADS  Google Scholar 

  16. Nicknish, J. M. & Macdonald, J. R. Basal Miocene ash in White River Badlands, South Dakota. Bull. Am. Assoc. Petrol. Geol. 46, 685–690 ( 1962).

    CAS  Google Scholar 

  17. Swisher, C. C. III . Stratigraphy And Biostratigraphy Of The Eastern Portion Of Wildcat Ridge, Western Nebraska. Thesis, Univ. Nebraska ( 1982).

    Google Scholar 

  18. Rose, W. I. Jr, Chuan, R. L., Cadle, R. D. & Woods, D. C. Small particles in volcanic eruption clouds. Am. J. Sci. 280, 671–696 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Gamsjäger, H. & Murmann, R. K. in Advances in Inorganic and Bioinorganic Mechanisms (ed. Sykes, A. G.) 317 –381 (Academic, London, 1983).

    Google Scholar 

  20. Cerling, T. E. Carbon dioxide in the atmosphere – evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377– 400 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: A critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Berner, R. A. et al. Isotope fractionation and atmospheric oxygen: Implications for phanerozoic O2 evolution. Science 287 , 1630–1633 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Karlsson, H. R., Clayton, R. N., Gibson, E. K. & Mayeda, T. K. Water in SNC meteorites - Evidence for a martian hydrosphere. Science 255, 1409–1411 ( 1992).

    Article  ADS  CAS  Google Scholar 

  24. Farquhar, J. & Thiemens, M. H. The oxygen cycle of the Martian atmosphere-regolith system: Δ17O of secondary phases in Nakhla and Lafayette. J. Geophys. Res. 105 (E5), 11991–11997 (2000).

    Article  ADS  Google Scholar 

  25. Bao, H. & Thiemens, M. H. Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous δ18O and δ17O analysis. Anal. Chem. (in the press).

  26. Clayton, R. N. & Mayeda, T. K. Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet. Sci. Lett. 62, 1–6 ( 1983).

    Article  ADS  CAS  Google Scholar 

  27. Bhattacharya, S. K. & Thiemens, M. H. New evidence for symmetry dependent isotope effects - O+CO reaction. Z. Naturforsch. A J. Phys. Sci. 44, 435–444 (1989).

    ADS  CAS  Google Scholar 

  28. Forrest, J. & Newman, L. Silver-110 microgram sulfate analysis for the short time resolution of ambient level of sulfur aerosol. Anal. Chem. 49, 1579–1584 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Jackson for technical assistance, J. Cannia for sand samples from Scotts Bluff, Nebraska, J. Alt for marine ferric oxide samples, J. Savarino for helpful discussions, and NASA and NSF for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, H., Thiemens, M., Farquhar, J. et al. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176–178 (2000). https://doi.org/10.1038/35018052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing