Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Configurational entropy and diffusivity of supercooled water

Abstract

As a liquid approaches the glass transition, its properties are dominated by local potential minima1,2 in its energy landscape. The liquid experiences localized vibrations in the basins of attraction surrounding the minima, and rearranges via relatively infrequent inter-basin jumps3. As a result, the liquid dynamics at low temperature are related to the system's exploration of its own configuration space. The ‘thermodynamic approach’ to the glass transition considers the reduction in configuration space4,5,6,7,8 explored as the system cools, and predicts that the configurational entropy5,9,10 (a measure of the number of local potential energy minima sampled by the liquid) is related to the diffusion constant. Here we report a stringent test of the thermodynamic approach for liquid water (a convenient system to study because of an anomalous pressure dependence in the diffusion constant). We calculate the configurational entropy at points spanning a large region of the temperature–density plane, using a model11 that reproduces the dynamical anomalies of liquid water. We find that the thermodynamic approach can be used to understand the characteristic dynamic anomalies, and that the diffusive dynamics are governed by the configurational entropy. Our results indicate that the thermodynamic approach might be extended to predict the dynamical behaviour of supercooled liquids in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated values of the total vibrational and configurational entropy for one particular isochore, ρ = 1.0 g cm-3.
Figure 2: Density dependence of four quantities.
Figure 3: Lines of entropy and diffusion constant extrema, comparing experiments and the present simulations.
Figure 4: The locus of the mode-coupling theory transition temperature TMCT (ref.

Similar content being viewed by others

References

  1. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 ( 1995).

    Article  ADS  CAS  Google Scholar 

  3. Goldstein, M. Viscous liquids and the glass transition: A potential energy barrier picture. J. Chem. Phys. 51, 3728– 3739 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Kauzmann, A. W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  5. Adams, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1958).

    Article  ADS  Google Scholar 

  6. Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B 103, 4060–4065 (1999).

    Article  CAS  Google Scholar 

  7. Mézard, M. & Parisi, G. Thermodynamics of glasses: A first principles computation. J. Phys. Cond. Matter 11 A157–A165 ( 1999).

    Article  ADS  Google Scholar 

  8. Wolfgardt, M., Baschnagel, J., Paul, W. & Binder, K. Entropy of glassy polymer melts: Comparison between Gibbs–DiMarzio theory and simulation. Phys. Rev. E 54, 1535– 1543 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Shulz, M. Energy landscape, minimum points, and non-Arrhenius behavior of super-cooled liquids. Phys. Rev. B 57, 11319– 11333 (1998).

    Article  ADS  Google Scholar 

  10. Debenedetti, P. G. Metastable liquids (Princeton Univ. Press, Princeton, 1997).

    Google Scholar 

  11. Berendsen, H. J. C., Grigera, J. R. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  12. Fabbian, L. et al. Molecular mode-coupling theory for supercooled liquids: application to water. Phys. Rev. E 60, 5768– 5777 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Starr, F. W., Sciortino, F. & Stanley, H. E. Dynamics of simulates water under pressure. Phys. Rev. E 60, 6757–6768 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  15. Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Condens. Mat. 11, R85–R115 ( 1999).

    Article  ADS  CAS  Google Scholar 

  16. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in super-cooled water to 300 MPa. Phys. Rev. Lett. 59, 1128–1131 ( 1987).

    Article  ADS  CAS  Google Scholar 

  17. Angell, C. A., Finch, E. D., Woolf, L. A. & Bach, P. Spin-echo diffusion coefficients of water to 2380 bar and -20 °C. J. Chem. Phys. 65, 3063–3066 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. La Nave, E., Scala, A., Starr, F. W., Sciortino, F. & Stanley, H. E. Instantaneous normal mode analysis of supercooled water. Phys. Rev. Lett. 84, 4605– 4608 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Mishima, O. The liquid–liquid critical point in heavy water. Phys. Rev. Lett. 85, 334–337 ( 2000).

    Article  ADS  CAS  Google Scholar 

  23. Rosenfeld, Y. & Tarazona, P. Density functional theory and the asymptotic high density expansion of the free energy of classical solids and fluids. Mol. Phys. 95, 141– 150 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Coluzzi, B., Verrochio, P. & Parisi, G. Thermodynamical liquid-glass transition in a Lennard-Jones binary mixture. Phys. Rev. Lett. 84, 306 –309 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Press, W. H., Flannery, B. P., Teukolsky, A. A. & Vetterling, W. T. Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  27. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Smith, R. S. & Kay, B. D. The existence of supercooled liquid water at 150 K. Nature 398, 788– 791 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Bergman, R. & Swenson, J. Dynamics of supercooled water in confined geometry. Nature 403, 283– 286 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell, S. Sastry and R. J. Speedy for helpful discussions, and the NSF for support. F.S. acknowledges partial support from the Ministero Universitá Ricerca Scientifica e Tecnologica (MURST), Progetto Ricerca Interesse Nazionale (PRIN 98) and the Istituto Nazionale Fisica della Materia-Progetto di Ricerca Avanzata (HOPPING) (INFM-PRA-HOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Eugene Stanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scala, A., Starr, F., La Nave, E. et al. Configurational entropy and diffusivity of supercooled water. Nature 406, 166–169 (2000). https://doi.org/10.1038/35018034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing