Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin


The stable introduction of a functional β-globin gene in haematopoietic stem cells could be a powerful approach to treat β-thalassaemia1 and sickle-cell disease2. Genetic approaches aiming to increase normal β-globin expression in the progeny of autologous haematopoietic stem cells3 might circumvent the limitations and risks of allogeneic cell transplants4. However, low-level expression, position effects and transcriptional silencing hampered the effectiveness of viral transduction of the human β-globin gene when it was linked to minimal regulatory sequences5. Here we show that the use of recombinant lentiviruses enables efficient transfer and faithful integration of the human β-globin gene together with large segments of its locus control region. In long-term recipients of unselected transduced bone marrow cells, tetramers of two murine α-globin and two human βA-globin molecules account for up to 13% of total haemoglobin in mature red cells of normal mice. In β-thalassaemic heterozygous mice higher percentages are obtained (17% to 24%), which are sufficient to ameliorate anaemia and red cell morphology. Such levels should be of therapeutic benefit in patients with severe defects in haemoglobin production.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and stability of recombinant lentiviral vectors.
Figure 2: Increased mean β-globin expression in MEL cells and proportion of clones expressing detectable human β-globin with the TNS9 vector.
Figure 3: Long-term stability of vector copy number, human β-globin RNA levels and haemoglobin tetramers in peripheral blood of bone marrow chimaeras.
Figure 4: Integration of lentiviral vectors into hematopoietic stem cells.
Figure 5: Correction of anisocytosis and poikilocytosis in bone marrow chimaeras reconstituted with TNS9-transduced Hbbth3/+ bone marrow cells.
Figure 6: Amelioration of haematological parameters in bone marrow chimaeras reconstituted with TNS9-transduced Hbbth3/+ bone marrow cells.


  1. Weatherall, D. J. & Clegg, J. B. The Thalassemia Syndromes (Blackwell Scientific, Oxford, 1981).

    Google Scholar 

  2. Nathan, D. G. & Oski, F. A. Hematology of Infancy and Childhood (WB Saunders, Philedelphia, 1998).

    Google Scholar 

  3. Sadelain, M. Genetic treatment of the haemoglobinopathies: recombinations and new combinations. Br. J. Haematol. 98, 247– 253 (1997).

    CAS  Article  Google Scholar 

  4. Boulad, F. et al. Bone marrow transplantation for homozygous beta-thalassemia. Ann. N. Y. Acad. Sci. 850, 498– 502 (1998).

    ADS  CAS  Article  Google Scholar 

  5. Rivella, S. & Sadelain, M. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin. Hematol. 35, 112–125 (1998).

    CAS  PubMed  Google Scholar 

  6. Tuan, D., Solomon, W., Li, Q. & London, I. M. The “beta-like-globin” gene domain in human erythroid cells. Proc. Natl Acad. Sci. USA 82, 6384–6388 ( 1985).

    ADS  CAS  Article  Google Scholar 

  7. Forrester, W. C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G. & Groudine, M. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 15, 10159–10177 (1987).

    CAS  Article  Google Scholar 

  8. Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975– 985 (1987).

    CAS  Article  Google Scholar 

  9. Sadelain, M., Wang, C. H., Antoniou, M., Grosveld, F. & Mulligan, R. C. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc. Natl Acad. Sci. USA 92, 6728– 6732 (1995).

    ADS  CAS  Article  Google Scholar 

  10. Leboulch, P. et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J. 13, 3065–3076 (1994).

    CAS  Article  Google Scholar 

  11. Raftopoulos, H., Ward, M., Leboulch, P. & Bank, A. Long-term transfer and expression of the human beta-globin gene in a mouse transplant model. Blood 90, 3414–3422 (1997).

    CAS  PubMed  Google Scholar 

  12. Grosveld, F. et al. The dynamics of globin gene expression and gene therapy vectors. Semin. Hematol. 35, 105– 111 (1998).

    CAS  PubMed  Google Scholar 

  13. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

    CAS  Article  Google Scholar 

  14. Higgs, D. R. Do LCRs open chromatin domains? Cell 95, 299–302 (1998).

    CAS  Article  Google Scholar 

  15. Engel, J. D. & Tanimoto, K. Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100, 499–502 ( 2000).

    CAS  Article  Google Scholar 

  16. Novak, U., Harris, E. A., Forrester, W., Groudine, M. & Gelinas, R. High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. Proc. Natl Acad. Sci. USA 87, 3386-3390 ( 1990).

    ADS  Google Scholar 

  17. Talbot, D. et al. A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature 338, 352—355 (1989).

    Article  Google Scholar 

  18. Bungert, J. et al. Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev. 9, 3083–3096 (1995).

    CAS  Article  Google Scholar 

  19. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 ( 1989).

    ADS  CAS  Article  Google Scholar 

  20. Porcu, S. et al. The human beta globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90, 4602–4609 (1997).

    CAS  PubMed  Google Scholar 

  21. Yang, B. et al. A mouse model for beta 0-thalassemia. Proc. Natl Acad. Sci. USA 92, 11608–11612 (1995).

    ADS  CAS  Article  Google Scholar 

  22. Fabry, M. E. et al. A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity. Blood 86, 2419–2428 (1995).

    CAS  PubMed  Google Scholar 

  23. Esan, G. J., Adesina, T. A. & Luzzatto, L. Synthesis of haemoglobins specified by allelic genes in human heterozygotes. Nature 229, 143– 145 (1971).

    CAS  Google Scholar 

  24. Stamatoyannopoulos, G., Nienhuis, A. W., Majerus, P. & Varmus, H. The Molecular Basis Of Blood Diseases (WB Saunders, Philedelphia, 1994).

    Google Scholar 

  25. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M. & Torbett, B. E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 ( 1999).

    ADS  CAS  Article  Google Scholar 

  26. Amado, R. G. & Chen, I. S. Lentiviral vectors—the promise of gene therapy within reach? Science 285, 674–676 (1999).

    CAS  Article  Google Scholar 

  27. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnol. 15, 871–875 (1997).

    CAS  Article  Google Scholar 

  28. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463– 8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallardo, H. F., Tan, C., Ory, D. & Sadelain, M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90, 952–957 (1997).

    CAS  PubMed  Google Scholar 

  30. Rivella, S., Callegari, J. A., May, C, Tan, C. & Sadelain, M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J. Virol. 74, 4679–4687 (2000)

    CAS  Article  Google Scholar 

Download references


We thank M. Trudel for helpful discussion; C. Tan and H. Beauchemin for technical assistance and I. Rivière for reviewing the manuscript. This work was supported by grants from the NHLBI, the NCI, the Cancer Research Institute, the Cooley's Anaemia Foundation, DeWitt-Wallace Fund and the McDonnell Foundation Scholars Award.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michel Sadelain.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

May, C., Rivella, S., Callegari, J. et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406, 82–86 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing