Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Negative genetic correlation between male sexual attractiveness and survival


Indirect selection of female mating preferences may result from a genetic association between male attractiveness and offspring fitness1,2. The offspring of attractive males may have enhanced growth3,4,5, fecundity3,4, viability5,6,7,8 or attractiveness4,9,10,11. However, the extent to which attractive males bear genes that reduce other fitness components has remained unexplored. Here I show that sexual attractiveness in male guppies (Poecilia reticulata) is heritable and genetically correlated with ornamentation. Like ornamentation12,13,14, attractiveness may be substantially Y-linked. The benefit of mating with attractive males, and thus having attractive sons, is opposed by strong negative genetic correlation between attractiveness and both offspring survival and the number of sons maturing. Such correlations suggest either antagonistic pleiotropy between attractiveness and survival or linkage disequilibrium between attractive and deleterious alleles. The presence of many colour pattern genes on or near the non-recombining section of the Y chromosome may facilitate the accumulation of deleterious mutations by genetic hitch-hiking15,16. These findings show that genes enhancing sexual attractiveness may be associated with pleiotropic costs or heavy mutational loads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approximate multiple genetic correlation28 between ornamentation and male attractiveness.
Figure 2: The relationship between male survival and attractive ornamentation (ornamentation in Fig. 1).
Figure 3: Scale plan of the choice tank used in measuring attractiveness, with eight enclosures.

Similar content being viewed by others


  1. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930).

    Book  Google Scholar 

  2. Andersson, M. Sexual Selection (Princeton Univ. Press, Princeton, 1994).

    Google Scholar 

  3. Reynolds, J. D. & Gross, M. R. Female mate preference enhances offspring growth and reproduction in a fish, Poecilia reticulata . Proc. R. Soc. Lond. B 250, 57– 62 (1992).

    Article  ADS  Google Scholar 

  4. Moore, A. J. Genetic evidence for the “good genes” process of sexual selection. Behav. Ecol. Sociobiol. 35, 235– 241 (1994).

    Article  Google Scholar 

  5. Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371, 598– 599 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Norris, K. J. Heritable variation in a plumage indictor of viability in male great tits Paus major. Nature 362, 537– 539 (1993).

    Article  ADS  Google Scholar 

  7. Sheldon, B. C., Merilä, J., Qvarnströn, A., Gustafsson, L. & Ellegren, H. Paternal genetic contribution to offspring condition predicted by size of male secondary sexual character. Proc. R. Soc. Lond. B 264, 297– 302 (1997).

    Article  ADS  Google Scholar 

  8. Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. B 266, 85–91 (1999).

    Article  Google Scholar 

  9. Etges, W. J. Sexual selection operating in a wild population of Drosophila robusta. Evolution 50, 2095–2100 (1996).

    Article  PubMed  Google Scholar 

  10. Jones, T. M., Quinnell, R. J. & Balmford, A. Fisherian flies: benefits of female choice in a lekking sandfly. Proc. R. Soc. Lond. B 265, 1651 –1657 (1998).

    Article  Google Scholar 

  11. Wedell, N. & Tregenza, T. Successful fathers sire successful sons. Evolution 53, 620– 625 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto, T. in Handbook of Genetics (ed. King, R. C.) (Plenum, New York, 1975).

    Google Scholar 

  13. Angus, R. A. in Ecology and Evolution of Livebearing Fishes (Poeciliiidae) (eds Meffe, G. K. & Snelson, F. F. Jr) 51–68 (Prentice Hall, Englewood Cliffs, N.J., 1989).

    Google Scholar 

  14. Houde, A. E. Sex-linked heritability of a sexually selected character in a natural population of Poecilia reticulata (Pisces: Poeciliidae) (guppies). Heredity 69, 229–235 ( 1992).

    Article  Google Scholar 

  15. Rice, W. R. Evolution of the Y sex chromosome in animals. BioScience 46, 331–343 (1996).

    Article  Google Scholar 

  16. Rice, W. R. Genetic hitchiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116, 161– 167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Houde, A. E. Sex, Color and Mate Choice in Guppies (Princeton Univ. Press, Princeton, 1997).

    Google Scholar 

  18. Reznick, D. N., Butler, M. J., Rodd, F. H. & Ross, P. Life-history evolution in guppies (Poecilia reticulata). 6. Differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).

    PubMed  Google Scholar 

  19. von Schantz, T. et al. Artificial selection for increased comb size and its effects on other sexual characters and viability in Gallus domesticus (the domestic chicken). Heredity 75, 518– 529 (1995).

    Article  Google Scholar 

  20. Nayudu, P. L. Genetic studies of melanic color patterns and atypical sex determination in the guppy Poecilia reticulata. Copeia 2, 225–231 (1979).

    Article  Google Scholar 

  21. Rice, W. R. Sexually antagonistic genes: experimental evidence. Science 256, 1436–1439 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Roldan, E. R. S. & Gomendio, M. The Y chromosome as a battle ground for sexual selection. Trends Ecol. Evol. 14, 58–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Haskins, C. P., Young, P., Hewitt, R. E. & Haskins, E. F. Stabilised heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25, 575–588 (1970).

    Article  Google Scholar 

  24. Farr, J. A. Biased sex ratios in laboratory strains of guppies, Poecilia reticulata . Heredity 47, 237– 248 (1981).

    Article  Google Scholar 

  25. Rice, W. R. Degeneration of a nonrecombining chromosome. Science 263, 230–232 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Gilmour, A. R., Cullis, B. R., Welham, S. J. & Thompson, R. ASREML software. 〈〉 ( 1999).

  27. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  28. Blows, M. W. & Allan, R. A. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152, 826–837 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  29. Draper, N. & Smith, H. Applied Regression Analysis (Wiley, New York, 1981).

    MATH  Google Scholar 

Download references


I thank E. Bolitho and Y. Williams for assistance, and M. W. Blows, M. J. Caley, L. Day, J. A. Endler, K. Hughes, M. D. Jennions, M. Petrie, J. D. Reynolds, F. H. Rodd and B. Walsh for discussion, encouragement, advice and comments on the manuscript. I am supported by a fellowship and grant from the ARC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert Brooks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, R. Negative genetic correlation between male sexual attractiveness and survival . Nature 406, 67–70 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing