Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural architecture of an outer membrane channel as determined by electron crystallography

Abstract

PORINS are a family of membrane channels commonly found in the outer membranes of Gram-negative bacteria where they serve as diffusional pathways for waste products, nutrients and anti-biotics, and can also be receptors for bacteriophages1,2. Porin channels have been shown in vitro to be voltage-gated3–6. They can exhibit slight selectivities for certain solutes; for example PhoE porin has some selectivity for anionic and phosphate-containing compounds1,7. Unlike many known membrane proteins which often contain long stretches of hydrophobic segments that are believed to traverse the membrane in a helical conformation, porins are found to have charged residues distributed almost uniformly along their primary sequences and have most of their secondary structure in a β-sheet conformation8–10. We have made crystalline patches of PhoE porin embedded in a lipid bilayer and have used these to determine the structure of PhoE porin by electron crystallography to a resolution of 6Å. The basic structure consists of a trimer of elliptically shaped, cylindrical walls of β sheet. Each cylinder has an inner lining, formed by parts of the polypeptide, that defines the channel size. The structure provides a clue as to how deletions of segments of polypeptide, which are found in certain mutants, can result in an actual increase in the channel size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nikaido, H. & Vaara, M. Microbiol. Rev. 49, 1–32 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lugtenberg, B. & Van Alphen, L. Biochim biophys. Acta 737, 51–115 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Schindler, H. & Rosenbusch, J. P. Proc natn. Acad. Sci. U.S.A. 75, 3751–3755 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Dargent, B., Hofmann, W., Pattus, F. & Rosenbusch, J. P. EMBO J. 5, 773–778 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu, G., Shi, B., McGroarty, E. J. & Tien, H. T. Biochim. biophys. Acta 862, 57–64 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Mauro, A., Blake, M. & Labarca, P. Proc. natn. Acad Sci. U.S.A. 85, 1071–1075 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Korteland, J., Tommassen, J. & Lugtenberg, B. Biochim biophys. Acta 690, 282–289 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenbusch, J. P. J. biol. Chem. 249, 8019–8029 (1974).

    CAS  PubMed  Google Scholar 

  9. Kleffel, B., Garavito, R. M., Baumeister, W. & Rosenbusch, J. P. EMBO J. 4, 1589–1592 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tommassen, J. Membrane Biogenesis NATO ASI Series Vol. 16 (ed. Op den Kamp J.A.F.) 351–373 (NATO 1988).

    Book  Google Scholar 

  11. Walian, P. J. & Jap, B. K. J. molec. Biol. 215, 429–438 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Jap, B. K., Downing, K. H. & Walian, P. J. J. struct Biol. 103, 57–63 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Downing, K. H. & Glaeser, R. M. Utramicroscopy 20, 269–278 (1986).

    Article  CAS  Google Scholar 

  14. Bullough, P. & Henderson, R. Ultramiscoscopy 21, 223–230 (1987).

    Article  CAS  Google Scholar 

  15. Shaw, P. J. & Hills, G. J. Micron 12, 279–282 (1981).

    Google Scholar 

  16. Henderson, R. et al. J. molec Biol. 213, 899–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Jap, B. K. J. molec. Biol. 205, 407–419 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Agard, D. A. J. molec. Biol. 167, 849–852 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Jap, B. K. & Walian, J. P. Q. Rev. Biophys. 23–4, 367–403 (1990).

    Article  Google Scholar 

  20. Misra, R. & Benson, S. A. J. Bact. 170, 3611–3617 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benson, S. A., Occi, J. L. L. & Sampson, B. A. J. molec. Biol. 203, 961–970 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Hoenger, A., Gross, H., Aebi, U. & Engel, A. J. struct Biol. 103, 185–195 (1990).

    Article  CAS  Google Scholar 

  23. Nestel, U. et al. FEBS Lett 242, 405–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Weiss, M. S. et al. FEBS Lett 256, 143–146 (1989).

    Article  CAS  Google Scholar 

  25. Weiss, M. S., Wacker, T., Weckesser, J., Welte, W. & Schulz, G. E. FEBS Lett. 267, 268–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Sass, H. J. et al. J. molec. Biol. 209, 171–175 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jap, B., Walian, P. & Gehring, K. Structural architecture of an outer membrane channel as determined by electron crystallography. Nature 350, 167–170 (1991). https://doi.org/10.1038/350167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing