Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex

Abstract

Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. Enteropathogenic Escherichia coli (EPEC) causes significant paediatric morbidity and mortality world-wide1. A related A/E pathogen, enterohaemorrhagic E. coli (EHEC; O157:H7) is one of the most important food-borne pathogens in North America, Europe and Japan. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border2. The bacterial outer membrane adhesin, intimin3, is necessary for the production of the A/E lesion and diarrhoea4. The A/E bacteria translocate their own receptor for intimin, Tir5, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. Here we describe the the crystal structures of an EPEC intimin carboxy-terminal fragment alone and in complex with the EPEC Tir intimin-binding domain, giving insight into the molecular mechanisms of adhesion of A/E pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The EPEC/host-cell adhesion interface.
Figure 2: A RIBBONS30 representation of the intimin and Tir IBD dimer complex.
Figure 3: GRASP11 surface representation of the dimeric intimin–Tir IBD complex.
Figure 4: Stereo RIBBONS30 representation of intimin D3 (colour-coded by secondary structures) and Tir IBD (in pink) with side chains of the residues involved in intimin–Tir recognition.

Similar content being viewed by others

References

  1. Todd, E. C. Epidemiology of foodborne diseases: a worldwide review. World Health Stat. Q. 50, 30–50 ( 1997).

    CAS  PubMed  Google Scholar 

  2. Knutton, S. Cellular responses to enteropathogenic Escherichia coli infection. Biosci. Rep. 15, 469–479 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 7839–7843 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donnenberg, M. S. et al. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J. Clin. Invest. 92 , 1412–1417 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91 , 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, H., Magoun, L., Luperchio, S., Schauer, D. B. & Leong, J. M. The Tir-binding region of enterohaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. Mol. Microbiol. 34, 67–81 (1999).

    Article  PubMed  Google Scholar 

  7. Hartland, E. L. et al. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol. Microbiol. 32, 151–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, G. et al. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nature Struct. Biol. 6, 313–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  10. Satow, Y., Cohen, G. H., Padlan, E. A. & Davies, D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J. Mol. Biol. 190, 593– 604 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144– 1149 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. Prediction of transmembrane alpha-helices in procariotic membrane proteins: the dense alignment surface method. Prot. Eng. 6, 673–676 ( 1997).

    Article  Google Scholar 

  13. Banner, D. W., Kokkinidis, M. & Tsernoglou, D. Structure of the ColE1 rop protein at 1.7 A resolution. J. Mol. Biol. 196, 657– 675 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, S. & Thornton, J. M. Principles of protein-protein interactions. Proc. Natl Acad. Sci. USA 93, 13–20 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Betz, S. F., Liebman, P. A. & DeGrado, W. F. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, rop-like, four-helix bundles. Biochemistry 36, 2450– 2458 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. DeVinney, R. et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389– 2398 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weis, W. I., Dickamer, K. & Hendrickson, W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127 –134 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Knutton, S. et al. Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infect. Immun. 65, 1644–1652 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schirmer, T. General and specific porins from bacterial outer membranes. J Struct Biol. 121, 101–109 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  20. Goosney, D. L. et al. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with α-actinin. Curr. Biol. (in the press).

  21. Otwinowski, Z. Oscillation data reduction program. Proceedings of the CCP4 Study Weekend: Data Collection and Processing (eds Sawyer,L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

  22. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  23. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  24. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. McRee, D. E. Practical Protein Crystallography (Academic, San Diego, 1993).

    Google Scholar 

  26. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  27. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  28. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  29. Laskowski, R. A., MacArthur, M. W. & Thornton, J. M. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8, 631– 639 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Carson, M. & Bugg, C. E. Algorithm for ribbon models of proteins. J. Mol. Graphics, 4, 121– 122 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Mosimann for suggestions on the Se-Met intimin derivative, F. Ness for help in the production of Fig. 1, and D. Lim and S. Mosimann for software support. Work in our laboratories was supported by the Medical Research Council (MRC) of Canada, the Canadian Bacterial Disease Network Center of Excellence, Burroughs Wellcome Foundation (BWF) and the Toronto Hospital for Sick Children. N.C.J.S. is an MRC Scholar and a BWF New Investigator, and B.B.F. is an MRC Scientist and a Howard Hughes International Research Scholar.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Frey, E., Pfuetzner, R. et al. Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature 405, 1073–1077 (2000). https://doi.org/10.1038/35016618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016618

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing